K-classes of Brill-Noether Loci and a Determinantal Formula

被引:8
|
作者
Anderson, Dave [1 ]
Chen, Linda [2 ]
Tarasca, Nicola [3 ]
机构
[1] Ohio State Univ, Dept Math, Columbus, OH 43210 USA
[2] Swarthmore Coll, Dept Math & Stat, Swarthmore, PA 19081 USA
[3] Virginia Commonwealth Univ, Dept Math & Appl Math, Richmond, VA 23284 USA
基金
美国国家科学基金会;
关键词
DEGENERACY LOCI; GROBNER GEOMETRY; CURVES; POLYNOMIALS; PROOF;
D O I
10.1093/imrn/rnab025
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We compute the Euler characteristic of the structure sheaf of the Brill-Noether locus of linear series with special vanishing at up to two marked points. When the Brill-Noether number rho is zero, we recover the Castelnuovo formula for the number of special linear series on a general curve; when rho = 1, we recover the formulas of Eisenbud-Harris, Pirola, and Chan-Martin-Pflueger-Teixidor for the arithmetic genus of a Brill-Noether curve of special divisors. These computations are obtained as applications of a new determinantal formula for the K-theory class of certain degeneracy loci. Our degeneracy locus formula also specializes to new determinantal expressions for the double Grothendieck polynomials corresponding to 321-avoiding permutations and gives double versions of the flagged skew Grothendieck polynomials recently introduced by Matsumura. Our result extends the formula of Billey-Jockusch-Stanley expressing Schubert polynomials for 321-avoiding permutations as generating functions for flagged skew tableaux.
引用
收藏
页码:12653 / 12698
页数:46
相关论文
共 50 条