Stability and transferability of machine learning force fields for molecular dynamics applications

被引:1
|
作者
Duangdangchote, Salatan [1 ]
Seferos, Dwight S. [2 ]
Voznyy, Oleksandr [1 ,2 ]
机构
[1] Univ Toronto Scarborough, Dept Phys & Environm Sci, 1065 Mil Trail, Scarborough, ON M1C 1A4, Canada
[2] Univ Toronto, Dept Chem, 1065 Mil Trail,80 St George St, Toronto, ON M5S 3H6, Canada
来源
DIGITAL DISCOVERY | 2024年 / 3卷 / 11期
基金
加拿大自然科学与工程研究理事会;
关键词
CONDUCTIVITY; SIMULATIONS;
D O I
10.1039/d4dd00140k
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
In this study, we focus on simplifying the generation of Machine Learning Force Fields (MLFFs) for Molecular Dynamics (MD) simulations of inorganic materials, with an emphasis on sustainable use of computational resources. We evaluate the efficiency and accuracy of existing state-of-the-art graph neural network (GNN) models and introduce new benchmarks that go beyond conventional mean absolute error on forces and energies. We showcase our methodology on the example of lithium-ion conductor materials, paving the way to a broader screening of ionic conductors for batteries and fuel cells. We benchmark GNN models for MLFF-MD and introduce new metrics beyond conventional force and energy errors. Our approach, demonstrated on lithium-ion conductors, aims to broaden ionic conductor screening for batteries.
引用
收藏
页码:2177 / 2182
页数:6
相关论文
共 50 条
  • [1] Machine Learning of Coarse-Grained Molecular Dynamics Force Fields
    Wang, Jiang
    Olsson, Simon
    Wehmeyer, Christoph
    Perez, Adria
    Charron, Nicholas E.
    de Fabritiis, Gianni
    Noe, Frank
    Clementi, Cecilia
    ACS CENTRAL SCIENCE, 2019, 5 (05) : 755 - 767
  • [2] Machine learning of coarse-grained molecular dynamics force fields
    Noe, Frank
    Clementi, Cecilia
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2019, 258
  • [3] Applications and Advances in Machine Learning Force Fields
    Wu, Shiru
    Yang, Xiaowei
    Zhao, Xun
    Li, Zhipu
    Lu, Min
    Xie, Xiaoji
    Yan, Jiaxu
    JOURNAL OF CHEMICAL INFORMATION AND MODELING, 2023, 63 (22) : 6972 - 6985
  • [4] Improving machine learning force fields for molecular dynamics simulations with fine-grained force metrics
    Wang, Zun
    Wu, Hongfei
    Sun, Lixin
    He, Xinheng
    Liu, Zhirong
    Shao, Bin
    Wang, Tong
    Liu, Tie-Yan
    JOURNAL OF CHEMICAL PHYSICS, 2023, 159 (03):
  • [5] Transferability of anharmonic force fields in simulations of molecular vibrations
    Parchansky, Vaclav
    Bour, Petr
    JOURNAL OF CHEMICAL PHYSICS, 2010, 133 (04):
  • [6] Machine Learning Force Fields
    Unke, Oliver T.
    Chmiela, Stefan
    Sauceda, Huziel E.
    Gastegger, Michael
    Poltaysky, Igor
    Schuett, Kristof T.
    Tkatchenko, Alexandre
    Mueller, Klaus-Robert
    CHEMICAL REVIEWS, 2021, 121 (16) : 10142 - 10186
  • [7] Machine Learning for Accurate Force Calculations in Molecular Dynamics Simulations
    Pattnaik, Punyaslok
    Raghunathan, Shampa
    Kalluri, Tarun
    Bhimalapuram, Prabhakar
    Jawahar, C., V
    Priyakumar, U. Deva
    JOURNAL OF PHYSICAL CHEMISTRY A, 2020, 124 (34): : 6954 - 6967
  • [8] Machine learning of correlated dihedral potentials for atomistic molecular force fields
    Pascal Friederich
    Manuel Konrad
    Timo Strunk
    Wolfgang Wenzel
    Scientific Reports, 8
  • [9] Simulations and force fields with quantum mechanics/molecular mechanics and machine learning
    Yang, Weitao
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2019, 258
  • [10] Machine Learning Directed Optimization of Classical Molecular Modeling Force Fields
    Befort, Bridgette J.
    DeFever, Ryan S.
    Tow, Garrett M.
    Dowling, Alexander W.
    Maginn, Edward J.
    JOURNAL OF CHEMICAL INFORMATION AND MODELING, 2021, 61 (09) : 4400 - 4414