Stability and transferability of machine learning force fields for molecular dynamics applications

被引:1
|
作者
Duangdangchote, Salatan [1 ]
Seferos, Dwight S. [2 ]
Voznyy, Oleksandr [1 ,2 ]
机构
[1] Univ Toronto Scarborough, Dept Phys & Environm Sci, 1065 Mil Trail, Scarborough, ON M1C 1A4, Canada
[2] Univ Toronto, Dept Chem, 1065 Mil Trail,80 St George St, Toronto, ON M5S 3H6, Canada
来源
DIGITAL DISCOVERY | 2024年 / 3卷 / 11期
基金
加拿大自然科学与工程研究理事会;
关键词
CONDUCTIVITY; SIMULATIONS;
D O I
10.1039/d4dd00140k
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
In this study, we focus on simplifying the generation of Machine Learning Force Fields (MLFFs) for Molecular Dynamics (MD) simulations of inorganic materials, with an emphasis on sustainable use of computational resources. We evaluate the efficiency and accuracy of existing state-of-the-art graph neural network (GNN) models and introduce new benchmarks that go beyond conventional mean absolute error on forces and energies. We showcase our methodology on the example of lithium-ion conductor materials, paving the way to a broader screening of ionic conductors for batteries and fuel cells. We benchmark GNN models for MLFF-MD and introduce new metrics beyond conventional force and energy errors. Our approach, demonstrated on lithium-ion conductors, aims to broaden ionic conductor screening for batteries.
引用
收藏
页码:2177 / 2182
页数:6
相关论文
共 50 条
  • [11] Machine learning of correlated dihedral potentials for atomistic molecular force fields
    Friederich, Pascal
    Konrad, Manuel
    Strunk, Timo
    Wenzel, Wolfgang
    SCIENTIFIC REPORTS, 2018, 8
  • [12] Machine learning of accurate energy-conserving molecular force fields
    Chmiela, Stefan
    Tkatchenko, Alexandre
    Sauceda, Huziel E.
    Poltavsky, Igor
    Schuett, Kristof T.
    Mueller, Klaus-Robert
    SCIENCE ADVANCES, 2017, 3 (05):
  • [13] On the design space between molecular mechanics and machine learning force fields
    Wang, Yuanqing
    Takaba, Kenichiro
    Chen, Michael S.
    Wieder, Marcus
    Xu, Yuzhi
    Zhu, Tong
    Zhang, John Z. H.
    Nagle, Arnav
    Yu, Kuang
    Wang, Xinyan
    Cole, Daniel J.
    Rackers, Joshua A.
    Cho, Kyunghyun
    Greener, Joe G.
    Eastman, Peter
    Martiniani, Stefano
    Tuckerman, Mark E.
    APPLIED PHYSICS REVIEWS, 2025, 12 (02):
  • [14] Molecular force fields with gradient-domain machine learning (GDML): Comparison and synergies with classical force fields
    Sauceda, Huziel E.
    Gastegger, Michael
    Chmiela, Stefan
    Mueller, Klaus-Robert
    Tkatchenko, Alexandre
    JOURNAL OF CHEMICAL PHYSICS, 2020, 153 (12):
  • [15] Machine Learning Force Fields and Coarse-Grained Variables in Molecular Dynamics: Application to Materials and Biological Systems
    Gkeka, Paraskevi
    Stoltz, Gabriel
    Farimani, Amir Barati
    Belkacemi, Zineb
    Ceriotti, Michele
    Chodera, John D.
    Dinner, Aaron R.
    Ferguson, Andrew L.
    Maillet, Jean-Bernard
    Minoux, Herve
    Peter, Christine
    Pietrucci, Fabio
    Silveira, Ana
    Tkatchenko, Alexandre
    Trstanova, Zofia
    Wiewiora, Rafal
    Lelievre, Tony
    JOURNAL OF CHEMICAL THEORY AND COMPUTATION, 2020, 16 (08) : 4757 - 4775
  • [16] Routine Molecular Dynamics Simulations Including Nuclear Quantum Effects: From Force Fields to Machine Learning Potentials
    Ple, Thomas
    Mauger, Nastasia
    Adjoua, Olivier
    Inizan, Theo Jaffrelot
    Lagardere, Louis
    Huppert, Simon
    Piquemal, Jean-Philip
    JOURNAL OF CHEMICAL THEORY AND COMPUTATION, 2023, 19 (05) : 1432 - 1445
  • [17] Crash testing machine learning force fields for molecules, materials, and interfaces: molecular dynamics in the TEA challenge 2023
    Poltavsky, Igor
    Puleva, Mirela
    Charkin-Gorbulin, Anton
    Fonseca, Gregory
    Batatia, Ilyes
    Browning, Nicholas J.
    Chmiela, Stefan
    Cui, Mengnan
    Frank, J. Thorben
    Heinen, Stefan
    Huang, Bing
    Kaser, Silvan
    Kabylda, Adil
    Khan, Danish
    Mueller, Carolin
    Price, Alastair J. A.
    Riedmiller, Kai
    Topfer, Kai
    Ko, Tsz Wai
    Meuwly, Markus
    Rupp, Matthias
    Csanyi, Gabor
    Anatole von Lilienfeld, O.
    Margraf, Johannes T.
    Mueller, Klaus-Robert
    Tkatchenko, Alexandre
    CHEMICAL SCIENCE, 2025, 16 (08) : 3738 - 3754
  • [18] Towards exact molecular dynamics simulations with machine-learned force fields
    Chmiela, Stefan
    Sauceda, Huziel
    Mueller, Klaus-Robert
    Tkatchenko, Alexandre
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2018, 256
  • [19] Towards exact molecular dynamics simulations with machine-learned force fields
    Chmiela, Stefan
    Sauceda, Huziel E.
    Mueller, Klaus-Robert
    Tkatchenko, Alexandre
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2019, 257
  • [20] Towards exact molecular dynamics simulations with machine-learned force fields
    Chmiela, Stefan
    Sauceda, Huziel E.
    Mueller, Klaus-Robert
    Tkatchenko, Alexandre
    NATURE COMMUNICATIONS, 2018, 9