Stability and transferability of machine learning force fields for molecular dynamics applications

被引:1
|
作者
Duangdangchote, Salatan [1 ]
Seferos, Dwight S. [2 ]
Voznyy, Oleksandr [1 ,2 ]
机构
[1] Univ Toronto Scarborough, Dept Phys & Environm Sci, 1065 Mil Trail, Scarborough, ON M1C 1A4, Canada
[2] Univ Toronto, Dept Chem, 1065 Mil Trail,80 St George St, Toronto, ON M5S 3H6, Canada
来源
DIGITAL DISCOVERY | 2024年 / 3卷 / 11期
基金
加拿大自然科学与工程研究理事会;
关键词
CONDUCTIVITY; SIMULATIONS;
D O I
10.1039/d4dd00140k
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
In this study, we focus on simplifying the generation of Machine Learning Force Fields (MLFFs) for Molecular Dynamics (MD) simulations of inorganic materials, with an emphasis on sustainable use of computational resources. We evaluate the efficiency and accuracy of existing state-of-the-art graph neural network (GNN) models and introduce new benchmarks that go beyond conventional mean absolute error on forces and energies. We showcase our methodology on the example of lithium-ion conductor materials, paving the way to a broader screening of ionic conductors for batteries and fuel cells. We benchmark GNN models for MLFF-MD and introduce new metrics beyond conventional force and energy errors. Our approach, demonstrated on lithium-ion conductors, aims to broaden ionic conductor screening for batteries.
引用
收藏
页码:2177 / 2182
页数:6
相关论文
共 50 条
  • [31] Using PC clusters to evaluate the transferability of molecular mechanics force fields for proteins
    Okur, A
    Strockbine, B
    Hornak, V
    Simmerling, C
    JOURNAL OF COMPUTATIONAL CHEMISTRY, 2003, 24 (01) : 21 - 31
  • [32] sGDML: Constructing accurate and data efficient molecular force fields using machine learning
    Chmiela, Stefan
    Sauceda, Huziel E.
    Poltavsky, Igor
    Mueller, Klaus-Robert
    Tkatchenko, Alexandre
    COMPUTER PHYSICS COMMUNICATIONS, 2019, 240 : 38 - 45
  • [33] Molecular force fields with gradient-domain machine learning: Construction and application to dynamics of small molecules with coupled cluster forces
    Sauceda, Huziel E.
    Chmiela, Stefan
    Poltavsky, Igor
    Mueller, Klaus-Robert
    Tkatchenko, Alexandre
    JOURNAL OF CHEMICAL PHYSICS, 2019, 150 (11):
  • [34] Calibration of uncertainty in the active learning of machine learning force fields
    Thomas-Mitchell, Adam
    Hawe, Glenn
    Popelier, Paul L. A.
    MACHINE LEARNING-SCIENCE AND TECHNOLOGY, 2023, 4 (04):
  • [35] Test of molecular dynamics force fields in gramicidin A
    Turgut Bastug
    Serdar Kuyucak
    European Biophysics Journal, 2005, 34 : 377 - 382
  • [36] Test of molecular dynamics force fields in gramicidin A
    Bastug, T
    Kuyucak, S
    EUROPEAN BIOPHYSICS JOURNAL WITH BIOPHYSICS LETTERS, 2005, 34 (05): : 377 - 382
  • [37] Study of charges transferability for use in force fields
    Maciel, GS
    Garcia, E
    CHEMICAL PHYSICS LETTERS, 2006, 420 (4-6) : 497 - 502
  • [38] Transferability in Machine Learning for Electronic Structure via the Molecular Orbital Basis
    Welborn, Matthew
    Cheng, Lixue
    Miller, Thomas F., III
    JOURNAL OF CHEMICAL THEORY AND COMPUTATION, 2018, 14 (09) : 4772 - 4779
  • [39] Ensemble learning of coarse-grained molecular dynamics force fields with a kernel approach
    Wang, Jiang
    Chmiela, Stefan
    Mueller, Klaus-Robert
    Noe, Frank
    Clementi, Cecilia
    JOURNAL OF CHEMICAL PHYSICS, 2020, 152 (19):
  • [40] Molecular dynamics simulation and machine learning for predicting hydrogen solubility in water: Effects of temperature, pressure, finite system size and choice of molecular force fields
    Zhang, Junfang
    Clennell, Michael B.
    Sagotra, Arun
    Pascual, Ricardo
    CHEMICAL PHYSICS, 2023, 564