Approximation of reliabilities for random-regression single-step genomic best linear unbiased predictor models

被引:0
|
作者
Bermann, M. [1 ]
Aguilar, I. [2 ]
Munera, A. Alvarez [1 ]
Bauer, J. [3 ]
Splichal, J. [3 ]
Lourenco, D. [1 ]
Misztal, I. [1 ]
机构
[1] Univ Georgia, Dept Anim & Dairy Sci, Athens, GA 30602 USA
[2] Inst Nacl Invest Agr INIA, Montevideo 11500, Uruguay
[3] Czech Moravian Breeders Corporat, Benesovska 123, Hradistko 25209, Czech Republic
来源
JDS COMMUNICATIONS | 2024年 / 5卷 / 06期
基金
美国食品与农业研究所;
关键词
RELATIONSHIP MATRIX; GENETIC EVALUATION; MULTIPLE-TRAIT; FULL PEDIGREE; INVERSE;
D O I
10.3168/jdsc.2023-0513
中图分类号
S8 [畜牧、 动物医学、狩猎、蚕、蜂];
学科分类号
0905 ;
摘要
Random-regression models (RRM) are used in national genetic evaluations for longitudinal traits. The outputs of RRM are an index based on random-regression coefficients and its reliability. The reliabilities are obtained from the inverse of the coefficient matrix of mixed model equations (MME). The reliabilities must be approximated for large datasets because it is impossible to invert the MME. There is no extensive literature on methods to approximate the reliabilities of RRM when genomic information is included by single-step GBLUP. We developed an algorithm to approximate such reliabilities. Our method combines the reliability of the index without genomic information with the reliability of a GBLUP model in terms of effective record contributions. We tested our algorithm in the 3-lactation model for milk yield from the Czech Republic. The data had 30 million test-day records, 2.5 million animals in the pedigree, and 54,000 genotyped animals. The correlation between our approximation and the reliabilities obtained from the inversion of the MME was 0.98, and the slope and intercept of the regression were 0.91 and 0.02, respectively. The elapsed time to approximate the reliabilities for the Czech data was 21 min.
引用
收藏
页数:6
相关论文
共 50 条
  • [1] Efficient approximation of reliabilities for single-step genomic best linear unbiased predictor models with the Algorithm for Proven and Young
    Bermann, Matias
    Lourenco, Daniela
    Misztal, Ignacy
    JOURNAL OF ANIMAL SCIENCE, 2022, 100 (01)
  • [2] Comparison of Algorithms for Approximation of Accuracies for Single-Step Genomic Best Linear Unbiased Predictor Models
    Ramos, Pedro Vital Brasil
    Garcia, Andre
    Retallick, Kelli J.
    Bermann, Matias
    Misztal, Ignacy
    Lourenco, Daniela
    JOURNAL OF ANIMAL SCIENCE, 2023, 101
  • [3] Comparison of Algorithms for Approximation of Accuracies for Single-Step Genomic Best Linear Unbiased Predictor Models
    Ramos, Pedro Vital Brasil
    Garcia, Andre
    Retallick, Kelli J.
    Bermann, Matias
    Misztal, Ignacy
    Lourenco, Daniela
    JOURNAL OF ANIMAL SCIENCE, 2023, 101 : 16 - 17
  • [4] Breeding value reliabilities for multiple-trait single-step genomic best linear unbiased predictor
    Ben Zaabza, Hafedh
    Taskinen, Matti
    Mantysaari, Esa A.
    Pitkanen, Timo
    Aamand, Gert Pedersen
    Stranden, Ismo
    JOURNAL OF DAIRY SCIENCE, 2022, 105 (06) : 5221 - 5237
  • [5] Comparing algorithms to approximate accuracies for single-step genomic best linear unbiased predictor
    Ramos, Pedro
    Garcia, Andre
    Retallik, Kelli
    Bermann, Matias
    Tsuruta, Shogo
    Misztal, Ignacy
    Veroneze, Renata
    Lourenco, Daniela
    JOURNAL OF ANIMAL SCIENCE, 2024, 102
  • [6] Genetic evaluations in cattle using the single-step genomic best linear unbiased predictor
    Amaya Martinez, Alejandro
    Martinez Sarmiento, Rodrigo
    Ceron-Munoz, Mario
    REVISTA CORPOICA-CIENCIA Y TECNOLOGIA AGROPECUARIA, 2020, 21 (01):
  • [7] Solving efficiently large single-step genomic best linear unbiased prediction models
    Stranden, I.
    Matilainen, K.
    Aamand, G. P.
    Mantysaari, E. A.
    JOURNAL OF ANIMAL BREEDING AND GENETICS, 2017, 134 (03) : 264 - 274
  • [8] Genetic evaluation using single-step genomic best linear unbiased predictor in American Angus
    Lourenco, D. A. L.
    Tsuruta, S.
    Fragomeni, B. O.
    Masuda, Y.
    Aguilar, I.
    Legarra, A.
    Bertrand, J. K.
    Amen, T. S.
    Wang, L.
    Moser, D. W.
    Misztal, I.
    JOURNAL OF ANIMAL SCIENCE, 2015, 93 (06) : 2653 - 2662
  • [9] Genomic studies of milk-related traits in water buffalo (Bubalus bubalis) based on single-step genomic best linear unbiased prediction and random regression models
    Lazaro, Sirlene F.
    Tonhati, Humberto
    Oliveira, Hinayah R.
    Silva, Alessandra A.
    Nascimento, Andre, V
    Santos, Daniel J. A.
    Stefani, Gabriela
    Brito, Luiz F.
    JOURNAL OF DAIRY SCIENCE, 2021, 104 (05) : 5768 - 5793
  • [10] Crossbreed evaluations in single-step genomic best linear unbiased predictor using adjusted realized relationship matrices
    Lourenco, D. A. L.
    Tsuruta, S.
    Fragomeni, B. O.
    Chen, C. Y.
    Herring, W. O.
    Misztal, I.
    JOURNAL OF ANIMAL SCIENCE, 2016, 94 (03) : 909 - 919