Genetic evaluations in cattle using the single-step genomic best linear unbiased predictor

被引:4
|
作者
Amaya Martinez, Alejandro [1 ]
Martinez Sarmiento, Rodrigo [2 ]
Ceron-Munoz, Mario [3 ]
机构
[1] Univ Ciencias Aplicadas & Ambientales UDCA, Fac Ciencias Agr, Bogota, Colombia
[2] Corp Colombiana Invest Agr AGROSAVIA, Mosquera, Colombia
[3] Univ Antioquia, Fac Ciencias Agr, Escuela Prod Agr, Grp GaMMA, Medellin, Colombia
来源
关键词
animal husbandry; genetic improvement; genetic markers; genomics; phenotypes; FULL PEDIGREE; RELATIONSHIP MATRIX; BREEDING VALUES; DAIRY TRAITS; SELECTION; INFORMATION; STRATEGIES; ACCURACY; POPULATIONS; IMPUTATION;
D O I
10.21930/rcta.vol21_num1_art:1548
中图分类号
S [农业科学];
学科分类号
09 ;
摘要
Conventional genetic evaluations have been framed on estimated breeding values from equation systems of mixed models that consider simultaneously random and fixed effects. Recently, the development in genome sequencing technologies has allowed obtaining genomic information to include in genetic evaluations in order to increase the accuracy and genetic progress, and decrease the generation interval. The single-step best linear unbiased predictor is a methodology developed in the last years and accepts including genomic information replacing the genomic relationship matrix by a matrix that combines relationship by pedigree, and the genomic relationship of a genotyped population, allowing the estimation of breeding values for non-genotyped animals. The aim of this review article was to describe the methodology and its recent progress, as well as to know some of the strategies that could be used when the number of genotyped animals is low.
引用
收藏
页数:13
相关论文
共 50 条
  • [1] Genetic evaluation using single-step genomic best linear unbiased predictor in American Angus
    Lourenco, D. A. L.
    Tsuruta, S.
    Fragomeni, B. O.
    Masuda, Y.
    Aguilar, I.
    Legarra, A.
    Bertrand, J. K.
    Amen, T. S.
    Wang, L.
    Moser, D. W.
    Misztal, I.
    [J]. JOURNAL OF ANIMAL SCIENCE, 2015, 93 (06) : 2653 - 2662
  • [2] Crossbreed evaluations in single-step genomic best linear unbiased predictor using adjusted realized relationship matrices
    Lourenco, D. A. L.
    Tsuruta, S.
    Fragomeni, B. O.
    Chen, C. Y.
    Herring, W. O.
    Misztal, I.
    [J]. JOURNAL OF ANIMAL SCIENCE, 2016, 94 (03) : 909 - 919
  • [3] Multibreed genomic evaluation for production traits of dairy cattle in the United States using single-step genomic best linear unbiased predictor
    Cesarani, A.
    Lourenco, D.
    Tsuruta, S.
    Legarra, A.
    Nicolazzi, E. L.
    VanRaden, P. M.
    Misztal, I
    [J]. JOURNAL OF DAIRY SCIENCE, 2022, 105 (06) : 5141 - 5152
  • [4] Comparison of genomic predictions for lowly heritable traits using multi-step and single-step genomic best linear unbiased predictor in Holstein cattle
    Guarini, A. R.
    Lourenco, D. A. L.
    Brito, L. F.
    Sargolzaei, M.
    Baes, C. F.
    Miglior, F.
    Misztal, I.
    Schenkel, F. S.
    [J]. JOURNAL OF DAIRY SCIENCE, 2018, 101 (09) : 8076 - 8086
  • [5] Comparing algorithms to approximate accuracies for single-step genomic best linear unbiased predictor
    Ramos, Pedro
    Garcia, Andre
    Retallik, Kelli
    Bermann, Matias
    Tsuruta, Shogo
    Misztal, Ignacy
    Veroneze, Renata
    Lourenco, Daniela
    [J]. JOURNAL OF ANIMAL SCIENCE, 2024, 102
  • [6] Comparison of Algorithms for Approximation of Accuracies for Single-Step Genomic Best Linear Unbiased Predictor Models
    Ramos, Pedro Vital Brasil
    Garcia, Andre
    Retallick, Kelli J.
    Bermann, Matias
    Misztal, Ignacy
    Lourenco, Daniela
    [J]. JOURNAL OF ANIMAL SCIENCE, 2023, 101
  • [7] Comparison of Algorithms for Approximation of Accuracies for Single-Step Genomic Best Linear Unbiased Predictor Models
    Ramos, Pedro Vital Brasil
    Garcia, Andre
    Retallick, Kelli J.
    Bermann, Matias
    Misztal, Ignacy
    Lourenco, Daniela
    [J]. JOURNAL OF ANIMAL SCIENCE, 2023, 101 : 16 - 17
  • [8] Technical note: Genetic groups in single-step single nucleotide polymorphism best linear unbiased predictor
    Vandenplas, Jeremie
    Eding, Herwin
    Calus, Mario P. L.
    [J]. JOURNAL OF DAIRY SCIENCE, 2021, 104 (03) : 3298 - 3303
  • [9] Breeding value reliabilities for multiple-trait single-step genomic best linear unbiased predictor
    Ben Zaabza, Hafedh
    Taskinen, Matti
    Mantysaari, Esa A.
    Pitkanen, Timo
    Aamand, Gert Pedersen
    Stranden, Ismo
    [J]. JOURNAL OF DAIRY SCIENCE, 2022, 105 (06) : 5221 - 5237
  • [10] Genomic prediction using pooled data in a single-step genomic best linear unbiased prediction framework
    Baller, Johnna L.
    Kachman, Stephen D.
    Kuehn, Larry A.
    Spangler, Matthew L.
    [J]. JOURNAL OF ANIMAL SCIENCE, 2020, 98 (06)