An Autoencoder Architecture for L-Band Passive Microwave Retrieval of Landscape Freeze-Thaw Cycle

被引:0
|
作者
Kumawat, Divya [1 ,2 ]
Ebtehaj, Ardeshir [1 ,2 ]
Xu, Xiaolan [3 ]
Colliander, Andreas [3 ]
Kumar, Vipin [4 ]
机构
[1] Univ Minnesota, Dept Civil Environm & Geoengn, Minneapolis, MN 55455 USA
[2] Univ Minnesota, St Anthony Falls Lab, Minneapolis, MN 55455 USA
[3] CALTECH, NASA, Jet Prop Lab, Pasadena, CA 91109 USA
[4] Univ Minnesota, Dept Comp Sci & Engn, Minneapolis, MN 55455 USA
基金
美国国家航空航天局;
关键词
Time series analysis; Microwave radiometry; Soil measurements; Snow; Ocean temperature; Land surface; Vegetation mapping; Microwave integrated circuits; Microwave FET integrated circuits; Electromagnetic heating; Climate change; Deep learning; Autoencoders; Remote sensing; Contrastive loss function; convolutional autoencoders; deep learning; L-band microwaves; snow; snow wetness; soil freeze and thaw; Soil Moisture Active Passive (SMAP) satellite; soil remote sensing; time series; SOIL-MOISTURE; NORTHERN-HEMISPHERE; UNFROZEN WATER; TIME-SERIES; PERMAFROST; NETWORK; CLASSIFICATION; TEMPERATURE; SENSITIVITY; RADAR;
D O I
10.1109/TGRS.2025.3530356
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
Estimating the landscape and soil freeze-thaw (FT) dynamics in the Northern Hemisphere (NH) is crucial for understanding permafrost response to global warming and changes in regional and global carbon budgets. A new framework for surface FT-cycle retrievals using L-band microwave radiometry based on a deep convolutional autoencoder neural network is presented. This framework defines the landscape FT-cycle retrieval as a time-series anomaly detection problem, considering the frozen states as normal and the thawed states as anomalies. The autoencoder retrieves the FT-cycle probabilistically through supervised reconstruction of the brightness temperature (TB) time series using a contrastive loss function that minimizes (maximizes) the reconstruction error for the peak winter (summer). Using the data provided by the Soil Moisture Active Passive (SMAP) satellite, it is demonstrated that the framework learns to isolate the landscape FT states over different land surface types with varying complexities related to the radiometric characteristics of snow cover, lake-ice phenology, and vegetation canopy. The consistency of the retrievals is assessed over Alaska using in situ observations, demonstrating an 11% improvement in accuracy and reduced uncertainties compared to traditional methods that rely on thresholding the normalized polarization ratio (NPR).
引用
收藏
页数:15
相关论文
共 50 条
  • [31] Soil Moisture Retrieval Using Ground-Based L-Band Passive Microwave Observations in Northeastern USA
    Temimi, Marouane
    Lakhankar, Tarendra
    Zhan, Xiwu
    Cosh, Michael H.
    Krakauer, Nir
    Fares, Ali
    Kelly, Victoria
    Khanbilvardi, Reza
    Kumassi, Laetitia
    VADOSE ZONE JOURNAL, 2014, 13 (03):
  • [32] An extended global Earth system data record on daily landscape freeze-thaw status determined from satellite passive microwave remote sensing
    Kim, Youngwook
    Kimball, John S.
    Glassy, Joseph
    Du, Jinyang
    EARTH SYSTEM SCIENCE DATA, 2017, 9 (01) : 133 - 147
  • [33] Detection of soil freezing from L-band passive microwave observations
    Rautiainen, Kimmo
    Lemmetyinen, Juha
    Schwank, Mike
    Kontu, Anna
    Menard, Cecile B.
    Maetzler, Christian
    Drusch, Matthias
    Wiesmann, Andreas
    Ikonen, Jaakko
    Pulliainen, Jouni
    REMOTE SENSING OF ENVIRONMENT, 2014, 147 : 206 - 218
  • [34] Radiometer calibration of airborne L-band active and passive microwave detector
    Sun Y.
    Zhao T.
    Li E.
    Luan Y.
    Wan G.
    Xu H.
    Zhao F.
    Yao C.
    Lyu L.
    Hu L.
    Geng D.
    National Remote Sensing Bulletin, 2021, 25 (04) : 918 - 928
  • [35] The freeze-thaw cycle exacerbates the ecotoxicity of polystyrene nanoplastics to Secale cereale L. seedlings
    Pan, Xinyu
    Bao, Guozhang
    Wang, Huixin
    Hu, Jinke
    Fan, Xinyu
    Xiang, Tong
    Tian, Lingzhi
    PLANT PHYSIOLOGY AND BIOCHEMISTRY, 2024, 211
  • [36] Feasibility of Characterizing Snowpack and the Freeze-Thaw State of Underlying Soil Using Multifrequency Active/Passive Microwave Data
    Bateni, S. Mohyeddin
    Huang, Chunlin
    Margulis, Steven A.
    Podest, Erika
    McDonald, Kyle
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2013, 51 (07): : 4085 - 4102
  • [37] Galactic noise and passive microwave remote sensing from space at L-band
    Le Vine, DM
    Abraham, S
    IGARSS 2001: SCANNING THE PRESENT AND RESOLVING THE FUTURE, VOLS 1-7, PROCEEDINGS, 2001, : 1581 - 1583
  • [38] Galactic noise and passive microwave remote sensing from space at L-band
    Le Vine, DM
    Abraham, S
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2004, 42 (01): : 119 - 129
  • [39] Passive and Active L-Band Microwave Observations and Modeling of Ocean Surface Winds
    Yueh, Simon H.
    Dinardo, Steve J.
    Fore, Alexander G.
    Li, Fuk K.
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2010, 48 (08): : 3087 - 3100
  • [40] CALIBRATION AND CHARACTERIZATION OF A SCANNING L-BAND ACTIVE PASSIVE (SLAP) MICROWAVE RADIOMETER
    Miles, Lynn R., Jr.
    Wong, Mark
    Wu, Albert
    DeMarco, Eugenia
    Kim, Edward
    Haynes, Tammy
    2016 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2016, : 294 - 295