An Autoencoder Architecture for L-Band Passive Microwave Retrieval of Landscape Freeze-Thaw Cycle

被引:0
|
作者
Kumawat, Divya [1 ,2 ]
Ebtehaj, Ardeshir [1 ,2 ]
Xu, Xiaolan [3 ]
Colliander, Andreas [3 ]
Kumar, Vipin [4 ]
机构
[1] Univ Minnesota, Dept Civil Environm & Geoengn, Minneapolis, MN 55455 USA
[2] Univ Minnesota, St Anthony Falls Lab, Minneapolis, MN 55455 USA
[3] CALTECH, NASA, Jet Prop Lab, Pasadena, CA 91109 USA
[4] Univ Minnesota, Dept Comp Sci & Engn, Minneapolis, MN 55455 USA
基金
美国国家航空航天局;
关键词
Time series analysis; Microwave radiometry; Soil measurements; Snow; Ocean temperature; Land surface; Vegetation mapping; Microwave integrated circuits; Microwave FET integrated circuits; Electromagnetic heating; Climate change; Deep learning; Autoencoders; Remote sensing; Contrastive loss function; convolutional autoencoders; deep learning; L-band microwaves; snow; snow wetness; soil freeze and thaw; Soil Moisture Active Passive (SMAP) satellite; soil remote sensing; time series; SOIL-MOISTURE; NORTHERN-HEMISPHERE; UNFROZEN WATER; TIME-SERIES; PERMAFROST; NETWORK; CLASSIFICATION; TEMPERATURE; SENSITIVITY; RADAR;
D O I
10.1109/TGRS.2025.3530356
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
Estimating the landscape and soil freeze-thaw (FT) dynamics in the Northern Hemisphere (NH) is crucial for understanding permafrost response to global warming and changes in regional and global carbon budgets. A new framework for surface FT-cycle retrievals using L-band microwave radiometry based on a deep convolutional autoencoder neural network is presented. This framework defines the landscape FT-cycle retrieval as a time-series anomaly detection problem, considering the frozen states as normal and the thawed states as anomalies. The autoencoder retrieves the FT-cycle probabilistically through supervised reconstruction of the brightness temperature (TB) time series using a contrastive loss function that minimizes (maximizes) the reconstruction error for the peak winter (summer). Using the data provided by the Soil Moisture Active Passive (SMAP) satellite, it is demonstrated that the framework learns to isolate the landscape FT states over different land surface types with varying complexities related to the radiometric characteristics of snow cover, lake-ice phenology, and vegetation canopy. The consistency of the retrievals is assessed over Alaska using in situ observations, demonstrating an 11% improvement in accuracy and reduced uncertainties compared to traditional methods that rely on thresholding the normalized polarization ratio (NPR).
引用
收藏
页数:15
相关论文
共 50 条
  • [21] Improved Understanding of Soil Surface Roughness Parameterization for L-Band Passive Microwave Soil Moisture Retrieval
    Panciera, Rocco
    Walker, Jeffrey P.
    Merlin, Olivier
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2009, 6 (04) : 625 - 629
  • [22] Parameterized Exponentially Correlated Surface Emission Model for L-band Passive Microwave Soil Moisture Retrieval
    Zhao, Tianjie
    Shi, Jiancheng
    Mialon, Arnaud
    Kerr, Yann
    2014 XXXITH URSI GENERAL ASSEMBLY AND SCIENTIFIC SYMPOSIUM (URSI GASS), 2014,
  • [23] Parametric exponentially correlated surface emission model for L-band passive microwave soil moisture retrieval
    Zhao Tianjie
    Shi Jiancheng
    Rajat, Bindlish
    Thomas, Jackson
    Michael, Cosh
    Jiang Lingmei
    Zhang Zhongjun
    Lan Huimin
    PHYSICS AND CHEMISTRY OF THE EARTH, 2015, 83-84 : 65 - 74
  • [24] EVALUATION OF L-BAND PASSIVE MICROWAVE SOIL MOISTURE FOR CANADA
    Champagne, Catherine
    Rowlandson, Tracy
    Berg, Aaron
    Burns, Travis
    L'Heureux, Jessika
    Adams, Justin
    McNairn, Heather
    Toth, Brenda
    2014 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2014, : 3650 - 3653
  • [25] L-band radiometry freeze/thaw validation using air temperature and ground measurements
    Williamson, Matthew
    Rowlandson, Tracy L.
    Berg, Aaron A.
    Roy, Alexandre
    Toose, Peter
    Derksen, Chris
    Arnold, Lauren
    Tetlock, Erica
    REMOTE SENSING LETTERS, 2018, 9 (04) : 403 - 410
  • [26] Evaluation of Spaceborne L-Band Radiometer Measurements for Terrestrial Freeze/Thaw Retrievals in Canada
    Roy, Alexandre
    Royer, Alain
    Derksen, Chris
    Brucker, Ludovic
    Langlois, Alexandre
    Mialon, Arnaud
    Kerr, Yann H.
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2015, 8 (09) : 4442 - 4459
  • [27] Soil moisture retrieval from airborne L-band passive microwave using high resolution multispectral data
    Hasan, Sayeh
    Montzka, Carsten
    Ruediger, Christoph
    Al, Muhammad
    Bogena, Heye R.
    Vereecken, Harry
    ISPRS JOURNAL OF PHOTOGRAMMETRY AND REMOTE SENSING, 2014, 91 : 59 - 71
  • [28] PASSIVE MICROWAVE RETRIEVAL OF VEGETATION OPTICAL DEPTH AND SOIL PERMITTIVITY OVER SNOW COVERED SURFACES AT L-BAND
    Kumawat, Divya
    Ebtehaj, Ardeshir
    IGARSS 2023 - 2023 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2023, : 3241 - 3244
  • [29] L-Band Passive and Active Microwave Geophysical Model Functions of Ocean Surface Winds and Applications to Aquarius Retrieval
    Yueh, Simon H.
    Tang, Wenqing
    Fore, Alexander G.
    Neumann, Gregory
    Hayashi, Akiko
    Freedman, Adam
    Chaubell, Julian
    Lagerloef, Gary S. E.
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2013, 51 (09): : 4619 - 4632
  • [30] Passive L-band microwave soil moisture retrieval error arising from topography in otherwise uniform scenes
    Sandells, Melody J.
    Davenport, Ian. J.
    Gurney, Robert. J.
    ADVANCES IN WATER RESOURCES, 2008, 31 (11) : 1433 - 1443