An Autoencoder Architecture for L-Band Passive Microwave Retrieval of Landscape Freeze-Thaw Cycle

被引:0
|
作者
Kumawat, Divya [1 ,2 ]
Ebtehaj, Ardeshir [1 ,2 ]
Xu, Xiaolan [3 ]
Colliander, Andreas [3 ]
Kumar, Vipin [4 ]
机构
[1] Univ Minnesota, Dept Civil Environm & Geoengn, Minneapolis, MN 55455 USA
[2] Univ Minnesota, St Anthony Falls Lab, Minneapolis, MN 55455 USA
[3] CALTECH, NASA, Jet Prop Lab, Pasadena, CA 91109 USA
[4] Univ Minnesota, Dept Comp Sci & Engn, Minneapolis, MN 55455 USA
基金
美国国家航空航天局;
关键词
Time series analysis; Microwave radiometry; Soil measurements; Snow; Ocean temperature; Land surface; Vegetation mapping; Microwave integrated circuits; Microwave FET integrated circuits; Electromagnetic heating; Climate change; Deep learning; Autoencoders; Remote sensing; Contrastive loss function; convolutional autoencoders; deep learning; L-band microwaves; snow; snow wetness; soil freeze and thaw; Soil Moisture Active Passive (SMAP) satellite; soil remote sensing; time series; SOIL-MOISTURE; NORTHERN-HEMISPHERE; UNFROZEN WATER; TIME-SERIES; PERMAFROST; NETWORK; CLASSIFICATION; TEMPERATURE; SENSITIVITY; RADAR;
D O I
10.1109/TGRS.2025.3530356
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
Estimating the landscape and soil freeze-thaw (FT) dynamics in the Northern Hemisphere (NH) is crucial for understanding permafrost response to global warming and changes in regional and global carbon budgets. A new framework for surface FT-cycle retrievals using L-band microwave radiometry based on a deep convolutional autoencoder neural network is presented. This framework defines the landscape FT-cycle retrieval as a time-series anomaly detection problem, considering the frozen states as normal and the thawed states as anomalies. The autoencoder retrieves the FT-cycle probabilistically through supervised reconstruction of the brightness temperature (TB) time series using a contrastive loss function that minimizes (maximizes) the reconstruction error for the peak winter (summer). Using the data provided by the Soil Moisture Active Passive (SMAP) satellite, it is demonstrated that the framework learns to isolate the landscape FT states over different land surface types with varying complexities related to the radiometric characteristics of snow cover, lake-ice phenology, and vegetation canopy. The consistency of the retrievals is assessed over Alaska using in situ observations, demonstrating an 11% improvement in accuracy and reduced uncertainties compared to traditional methods that rely on thresholding the normalized polarization ratio (NPR).
引用
收藏
页数:15
相关论文
共 50 条
  • [11] Application of Passive Microwave Data in Estimating Freeze-Thaw Dates of a Small Lake
    Uppuluri, Avinash V.
    Jost, Randy J.
    Luecke, Chris
    White, Michael A.
    2009 IEEE RADAR CONFERENCE, VOLS 1 AND 2, 2009, : 774 - +
  • [12] GLOBAL FREEZE/THAW PRODUCT FROM L-BAND RADIOMETER DATA
    Xu, Xiaolan
    Kim, Youngwook
    Kimball, John
    Derksen, Chris
    Dunbar, R. Scott
    Colliander, Andreas
    IGARSS 2018 - 2018 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2018, : 3762 - 3764
  • [13] PASSIVE L-BAND H POLARIZED MICROWAVE EMISSION DURING THE CORN GROWTH CYCLE
    Joseph, A. T.
    van der Velde, R.
    O'Neill, P. E.
    Choudhury, B. J.
    Kim, E.
    Lang, R. H.
    Gish, T.
    2011 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2011, : 3105 - 3108
  • [14] Passive Microwave Retrieval of Soil Moisture Below Snowpack at L-Band Using SMAP Observations
    Kumawat, Divya
    Olyaei, Mohammadali
    Gao, Lun
    Ebtehaj, Ardeshir
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2022, 60
  • [15] Standing water effect on soil moisture retrieval from L-band passive microwave observations
    Ye, N.
    Walker, J. P.
    Guerschman, J.
    Ryu, D.
    Gurney, R. J.
    REMOTE SENSING OF ENVIRONMENT, 2015, 169 : 232 - 242
  • [16] Surface rock effects on soil moisture retrieval from L-band passive microwave observations
    Ye, N.
    Walker, J. P.
    Rudiger, C.
    Ryu, D.
    Gurney, R. J.
    REMOTE SENSING OF ENVIRONMENT, 2018, 215 : 33 - 43
  • [17] PASSIVE MICROWAVE REMOTE SENSING OF LAKE FREEZE-THAW OVER HIGH MOUNTAIN ASIA
    Ruan, Yongjian
    Qiu, Yubao
    Yu, Xiaoqi
    Guo, Huadong
    Cheng, Bin
    2016 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2016, : 2818 - 2821
  • [18] Active and Passive Microwave Signatures of Diurnal Soil Freeze-Thaw Transitions on the Tibetan Plateau
    Zheng, Donghai
    Li, Xin
    Wen, Jun
    Hofste, Jan G.
    van der Velde, Rogier
    Wang, Xin
    Wang, Zuoliang
    Bai, Xiaojing
    Schwank, Mike
    Su, Zhongbo
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2022, 60
  • [19] Freeze/Thaw Detection and Validation Using Aquarius' L-Band Backscattering Data
    Xu, Xiaolan
    Derksen, Chris
    Yueh, Simon H.
    Dunbar, Roy Scott
    Colliander, Andreas
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2016, 9 (04) : 1370 - 1381
  • [20] Sea Surface Salinity and Wind Retrieval Using Combined Passive and Active L-Band Microwave Observations
    Yueh, Simon H.
    Chaubell, Julian
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2012, 50 (04): : 1022 - 1032