An Autoencoder Architecture for L-Band Passive Microwave Retrieval of Landscape Freeze-Thaw Cycle

被引:0
|
作者
Kumawat, Divya [1 ,2 ]
Ebtehaj, Ardeshir [1 ,2 ]
Xu, Xiaolan [3 ]
Colliander, Andreas [3 ]
Kumar, Vipin [4 ]
机构
[1] Univ Minnesota, Dept Civil Environm & Geoengn, Minneapolis, MN 55455 USA
[2] Univ Minnesota, St Anthony Falls Lab, Minneapolis, MN 55455 USA
[3] CALTECH, NASA, Jet Prop Lab, Pasadena, CA 91109 USA
[4] Univ Minnesota, Dept Comp Sci & Engn, Minneapolis, MN 55455 USA
基金
美国国家航空航天局;
关键词
Time series analysis; Microwave radiometry; Soil measurements; Snow; Ocean temperature; Land surface; Vegetation mapping; Microwave integrated circuits; Microwave FET integrated circuits; Electromagnetic heating; Climate change; Deep learning; Autoencoders; Remote sensing; Contrastive loss function; convolutional autoencoders; deep learning; L-band microwaves; snow; snow wetness; soil freeze and thaw; Soil Moisture Active Passive (SMAP) satellite; soil remote sensing; time series; SOIL-MOISTURE; NORTHERN-HEMISPHERE; UNFROZEN WATER; TIME-SERIES; PERMAFROST; NETWORK; CLASSIFICATION; TEMPERATURE; SENSITIVITY; RADAR;
D O I
10.1109/TGRS.2025.3530356
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
Estimating the landscape and soil freeze-thaw (FT) dynamics in the Northern Hemisphere (NH) is crucial for understanding permafrost response to global warming and changes in regional and global carbon budgets. A new framework for surface FT-cycle retrievals using L-band microwave radiometry based on a deep convolutional autoencoder neural network is presented. This framework defines the landscape FT-cycle retrieval as a time-series anomaly detection problem, considering the frozen states as normal and the thawed states as anomalies. The autoencoder retrieves the FT-cycle probabilistically through supervised reconstruction of the brightness temperature (TB) time series using a contrastive loss function that minimizes (maximizes) the reconstruction error for the peak winter (summer). Using the data provided by the Soil Moisture Active Passive (SMAP) satellite, it is demonstrated that the framework learns to isolate the landscape FT states over different land surface types with varying complexities related to the radiometric characteristics of snow cover, lake-ice phenology, and vegetation canopy. The consistency of the retrievals is assessed over Alaska using in situ observations, demonstrating an 11% improvement in accuracy and reduced uncertainties compared to traditional methods that rely on thresholding the normalized polarization ratio (NPR).
引用
收藏
页数:15
相关论文
共 50 条
  • [1] A Novel Freeze-Thaw State Detection Algorithm Based on L-Band Passive Microwave Remote Sensing
    Lv, Shaoning
    Wen, Jun
    Simmer, Clemens
    Zeng, Yijian
    Guo, Yuanyuan
    Su, Zhongbo
    REMOTE SENSING, 2022, 14 (19)
  • [2] L-Band Microwave Emission of Soil Freeze-Thaw Process in the Third Pole Environment
    Zheng, Donghai
    Wang, Xin
    van der Velde, Rogier
    Zeng, Yijian
    Wen, Jun
    Wang, Zuoliang
    Schwank, Mike
    Ferrazzoli, Paolo
    Su, Zhongbo
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2017, 55 (09): : 5324 - 5338
  • [3] Northern Hemisphere surface freeze-thaw product from Aquarius L-band radiometers
    Prince, Michael
    Roy, Alexandre
    Brucker, Ludovic
    Royer, Alain
    Kim, Youngwook
    Zhao, Tianjie
    EARTH SYSTEM SCIENCE DATA, 2018, 10 (04) : 2055 - 2067
  • [4] Comparing global passive microwave freeze/thaw records: Investigating differences between Ka- and L-band products
    Johnston, Jeremy
    Maggioni, Viviana
    Houser, Paul
    REMOTE SENSING OF ENVIRONMENT, 2020, 247
  • [5] POTENTIAL OF L-BAND PASSIVE MICROWAVE RADIOMETRY FOR SNOW PARAMETER RETRIEVAL
    Lemmetyinen, Juha
    Schwank, Mike
    Rautiainen, Kimmo
    Kontu, Anna
    Parkkinen, Tiina
    Maetzler, Christian
    Wiesmann, Andreas
    Wegmueller, Urs
    Derksen, Chris
    Toose, Peter
    Roy, Alexandre
    Pulliainen, Jouni
    2015 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2015, : 4033 - 4036
  • [6] Advantages and limitations of L-band bistatic radar remote sensing of landscape freeze/thaw state
    Chew, C.
    Podest, E.
    McDonald, K. C.
    Steiner, N.
    2017 INTERNATIONAL CONFERENCE ON ELECTROMAGNETICS IN ADVANCED APPLICATIONS (ICEAA), 2017, : 1743 - 1745
  • [7] Sampling depth of L-band radiometer measurements of soil moisture and freeze-thaw dynamics on the Tibetan Plateau
    Zheng, Donghai
    Li, Xin
    Wang, Xin
    Wang, Zuoliang
    Wen, Jun
    van der Velde, Rogier
    Schwank, Mike
    Su, Zhongbo
    REMOTE SENSING OF ENVIRONMENT, 2019, 226 : 16 - 25
  • [8] Benchmarking passive-microwave-satellite-derived freeze-thaw datasets
    Bartsch, Annett
    Muri, Xaver
    Hetzenecker, Markus
    Rautiainen, Kimmo
    Bergstedt, Helena
    Wuite, Jan
    Nagler, Thomas
    Nicolsky, Dmitry
    CRYOSPHERE, 2025, 19 (01): : 459 - 483
  • [9] USE OF L-BAND GROUND-BASED RADIOMETERS FOR FREEZE/THAW RETRIEVAL IN A BOREAL FOREST SITE
    Roy, Alexandre
    Toose, Peter
    Mavrovic, Alex
    Pappas, Christoforos
    Bergs, Aaron
    Rowlandson, Tracy
    Derksen, Chris
    Royer, Alain
    El-Amine, Mariam
    Helgason, Warren
    Barr, Alan
    Sonnentag, Oliver
    IGARSS 2018 - 2018 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2018, : 9042 - 9044
  • [10] Soil dielectric characterization during freeze-thaw transitions using L-band coaxial and soil moisture probes
    Mavrovic, Alex
    Lara, Renato Pardo
    Berg, Aaron
    Demontoux, Francois
    Royer, Alain
    Roy, Alexandre
    HYDROLOGY AND EARTH SYSTEM SCIENCES, 2021, 25 (02) : 1117 - 1131