Improving the Temporal Resolution of SOHO/MDI Magnetograms of Solar Active Regions Using a Deep Generative Model

被引:0
|
作者
Li, Jialiang [1 ,2 ]
Yurchyshyn, Vasyl [3 ]
Wang, Jason T. L. [1 ,2 ]
Wang, Haimin [1 ,3 ,4 ]
Abduallah, Yasser [1 ,2 ]
Alobaid, Khalid A. [1 ,5 ]
Xu, Chunhui [1 ,2 ]
Chen, Ruizhu [6 ]
Xu, Yan [1 ,3 ,4 ]
机构
[1] New Jersey Inst Technol, Inst Space Weather Sci, Newark, NJ 07102 USA
[2] New Jersey Inst Technol, Dept Comp Sci, Newark, NJ 07102 USA
[3] New Jersey Inst Technol, Big Bear Solar Observ, Big Bear City, CA 92314 USA
[4] New Jersey Inst Technol, Ctr Solar Terr Res, Newark, NJ 07102 USA
[5] King Saud Univ, Coll Appl Comp Sci, Riyadh 11451, Saudi Arabia
[6] Stanford Univ, W W Hansen Expt Phys Lab, Stanford, CA 94305 USA
来源
ASTROPHYSICAL JOURNAL | 2025年 / 980卷 / 02期
基金
美国国家科学基金会;
关键词
SPATIAL-RESOLUTION; SUPERRESOLUTION; NETWORK;
D O I
10.3847/1538-4357/adb032
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
We present a novel deep generative model, named GenMDI, to improve the temporal resolution of line-of-sight (LOS) magnetograms of solar active regions (ARs) collected by the Michelson Doppler Imager (MDI) on board the Solar and Heliospheric Observatory. Unlike previous studies that focus primarily on spatial super-resolution of MDI magnetograms, our approach can perform temporal super-resolution, which generates and inserts synthetic data between observed MDI magnetograms, thus providing finer temporal structure and enhanced details in the LOS data. The GenMDI model employs a conditional diffusion process, which synthesizes images by considering both preceding and subsequent magnetograms, ensuring that the generated images are not only of high quality but also temporally coherent with the surrounding data. Experimental results show that the GenMDI model performs better than the traditional linear interpolation method, especially in ARs with dynamic evolution in magnetic fields.
引用
收藏
页数:9
相关论文
共 39 条
  • [31] Improving Non-Line-of-Sight Identification in Cellular Positioning Systems Using a Deep Autoencoding and Generative Adversarial Network Model
    Gao, Yanbiao
    Deng, Zhongliang
    Huo, Yuqi
    Chen, Wenyan
    SENSORS, 2024, 24 (19)
  • [32] Improving Multi Object Tracking-By-Detection Model Using a Temporal Interlaced Encoding and a Specialized Deep Detector
    Mhalla, Ala
    Chateau, Thierry
    2019 30TH IEEE INTELLIGENT VEHICLES SYMPOSIUM (IV19), 2019, : 510 - 516
  • [33] Solar Cycle Prediction Using a Temporal Convolutional Network Deep-learning Model with a One-step Pattern
    Zhao, Cui
    Liu, Kun
    Yang, Shangbin
    Xia, Jinchao
    Chen, Jingxia
    Ren, Jie
    Liu, Shiyuan
    He, Fangyuan
    ASTROPHYSICAL JOURNAL SUPPLEMENT SERIES, 2025, 277 (02):
  • [34] Improving Parotid Gland Tumor Segmentation and Classification Using Geometric Active Contour Model and Deep Neural Network Framework
    Ben Slama, Amine
    Mbarki, Zouhair
    Seddik, Hassen
    Marrakchi, Jihene
    Boukriba, Seif
    Labidi, Salam
    TRAITEMENT DU SIGNAL, 2021, 38 (04) : 955 - 965
  • [35] Estimating high spatio-temporal resolution XCO2 2 using spatial features deep fusion model
    Cui, Liu
    Yang, Hui
    Qiao, Yina
    Huang, Xinfeng
    Feng, Gefei
    Lv, Qingzhou
    Fan, Huaiwei
    ATMOSPHERIC RESEARCH, 2024, 308
  • [36] Improving deep learning-based image super-resolution with residual learning and perceptual loss using SRGAN model
    Rehman Abbas
    Naijie Gu
    Soft Computing, 2023, 27 : 16041 - 16057
  • [37] Improving deep learning-based image super-resolution with residual learning and perceptual loss using SRGAN model
    Abbas, Rehman
    Gu, Naijie
    SOFT COMPUTING, 2023, 27 (21) : 16041 - 16057
  • [38] A Strong-flare Prediction Model Developed Using a Machine-learning Algorithm Based on the Video Data Sets of the Solar Magnetic Field of Active Regions
    Wang, Jingjing
    Luo, Bingxian
    Liu, Siqing
    Zhang, Yue
    ASTROPHYSICAL JOURNAL SUPPLEMENT SERIES, 2023, 269 (02):
  • [39] Improving the accuracy of daily solar radiation prediction by climatic data using an efficient hybrid deep learning model: Long short-term memory (LSTM) network coupled with wavelet transform
    Alizamir, Meysam
    Shiri, Jalal
    Fard, Ahmad Fakheri
    Kim, Sungwon
    Gorgij, AliReza Docheshmeh
    Heddam, Salim
    Singh, Vijay P.
    ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE, 2023, 123