Improving the Temporal Resolution of SOHO/MDI Magnetograms of Solar Active Regions Using a Deep Generative Model

被引:0
|
作者
Li, Jialiang [1 ,2 ]
Yurchyshyn, Vasyl [3 ]
Wang, Jason T. L. [1 ,2 ]
Wang, Haimin [1 ,3 ,4 ]
Abduallah, Yasser [1 ,2 ]
Alobaid, Khalid A. [1 ,5 ]
Xu, Chunhui [1 ,2 ]
Chen, Ruizhu [6 ]
Xu, Yan [1 ,3 ,4 ]
机构
[1] New Jersey Inst Technol, Inst Space Weather Sci, Newark, NJ 07102 USA
[2] New Jersey Inst Technol, Dept Comp Sci, Newark, NJ 07102 USA
[3] New Jersey Inst Technol, Big Bear Solar Observ, Big Bear City, CA 92314 USA
[4] New Jersey Inst Technol, Ctr Solar Terr Res, Newark, NJ 07102 USA
[5] King Saud Univ, Coll Appl Comp Sci, Riyadh 11451, Saudi Arabia
[6] Stanford Univ, W W Hansen Expt Phys Lab, Stanford, CA 94305 USA
来源
ASTROPHYSICAL JOURNAL | 2025年 / 980卷 / 02期
基金
美国国家科学基金会;
关键词
SPATIAL-RESOLUTION; SUPERRESOLUTION; NETWORK;
D O I
10.3847/1538-4357/adb032
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
We present a novel deep generative model, named GenMDI, to improve the temporal resolution of line-of-sight (LOS) magnetograms of solar active regions (ARs) collected by the Michelson Doppler Imager (MDI) on board the Solar and Heliospheric Observatory. Unlike previous studies that focus primarily on spatial super-resolution of MDI magnetograms, our approach can perform temporal super-resolution, which generates and inserts synthetic data between observed MDI magnetograms, thus providing finer temporal structure and enhanced details in the LOS data. The GenMDI model employs a conditional diffusion process, which synthesizes images by considering both preceding and subsequent magnetograms, ensuring that the generated images are not only of high quality but also temporally coherent with the surrounding data. Experimental results show that the GenMDI model performs better than the traditional linear interpolation method, especially in ARs with dynamic evolution in magnetic fields.
引用
收藏
页数:9
相关论文
共 39 条
  • [11] Toward a Live Homogeneous Database of Solar Active Regions Based on SOHO/MDI and SDO/HMI Synoptic Magnetograms. II. Parameters for Solar Cycle Variability
    Wang, Ruihui
    Jiang, Jie
    Luo, Yukun
    ASTROPHYSICAL JOURNAL, 2024, 971 (01):
  • [12] Statistical pattern recognition for labeling solar active regions:: application to SOHO/MDI imagery
    Turmon, M
    Pap, JM
    Mukhtar, S
    ASTROPHYSICAL JOURNAL, 2002, 568 (01): : 396 - 407
  • [13] Toward a Live Homogeneous Database of Solar Active Regions Based on SOHO/MDI and SDO/HMI Synoptic Magnetograms. I. Automatic Detection and Calibration
    Wang, Ruihui
    Jiang, Jie
    Luo, Yukun
    ASTROPHYSICAL JOURNAL SUPPLEMENT SERIES, 2023, 268 (02):
  • [14] Super-resolution of Solar Magnetograms Using Deep Learning
    Dou, Fengping
    Xu, Long
    Ren, Zhixiang
    Zhao, Dong
    Zhang, Xinze
    RESEARCH IN ASTRONOMY AND ASTROPHYSICS, 2022, 22 (08)
  • [15] Super-resolution of Solar Magnetograms Using Deep Learning
    Fengping Dou
    Long Xu
    Zhixiang Ren
    Dong Zhao
    Xinze Zhang
    ResearchinAstronomyandAstrophysics, 2022, 22 (08) : 220 - 231
  • [16] Deep Regression for Imaging Solar Magnetograms using Pyramid Generative Adversarial Networks
    Alshehhi, Rasha
    2020 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION WORKSHOPS (CVPRW 2020), 2020, : 807 - 815
  • [17] Automatic analysis of magnetograms for identification and classification of active regions using Deep Learning
    de Oliveira, Leticia Sousa
    Gradvohl, Andre Leon S.
    REVISTA BRASILEIRA DE COMPUTACAO APLICADA, 2020, 12 (02): : 67 - 79
  • [18] Deep-Learning Approach for McIntosh-Based Classification Of Solar Active Regions Using HMI and MDI Images
    Knyazeva, Irina
    Rybintsev, Andrey
    Ohinko, Timur
    Makarenko, Nikolay
    ADVANCES IN NEURAL COMPUTATION, MACHINE LEARNING, AND COGNITIVE RESEARCH III, 2020, 856 : 239 - 245
  • [19] Solar Line-of-Sight Magnetograms Super-Resolution Using Deep Neural Networks
    Habeeb, Mohammed Shoebuddin
    Aydin, Berkay
    Ahmadzadeh, Azim
    Georgoulis, Manolis
    Angryk, Rafal A.
    2020 IEEE INTERNATIONAL CONFERENCE ON BIG DATA (BIG DATA), 2020, : 4586 - 4593
  • [20] Line shape changes and doppler measurements in solar active regions.: I.: A method for correcting Dopplergrams from SOHO MDI
    Wachter, R.
    Schou, J.
    Sankarasubramanian, K.
    ASTROPHYSICAL JOURNAL, 2006, 648 (02): : 1256 - 1267