Improving the Temporal Resolution of SOHO/MDI Magnetograms of Solar Active Regions Using a Deep Generative Model

被引:0
|
作者
Li, Jialiang [1 ,2 ]
Yurchyshyn, Vasyl [3 ]
Wang, Jason T. L. [1 ,2 ]
Wang, Haimin [1 ,3 ,4 ]
Abduallah, Yasser [1 ,2 ]
Alobaid, Khalid A. [1 ,5 ]
Xu, Chunhui [1 ,2 ]
Chen, Ruizhu [6 ]
Xu, Yan [1 ,3 ,4 ]
机构
[1] New Jersey Inst Technol, Inst Space Weather Sci, Newark, NJ 07102 USA
[2] New Jersey Inst Technol, Dept Comp Sci, Newark, NJ 07102 USA
[3] New Jersey Inst Technol, Big Bear Solar Observ, Big Bear City, CA 92314 USA
[4] New Jersey Inst Technol, Ctr Solar Terr Res, Newark, NJ 07102 USA
[5] King Saud Univ, Coll Appl Comp Sci, Riyadh 11451, Saudi Arabia
[6] Stanford Univ, W W Hansen Expt Phys Lab, Stanford, CA 94305 USA
来源
ASTROPHYSICAL JOURNAL | 2025年 / 980卷 / 02期
基金
美国国家科学基金会;
关键词
SPATIAL-RESOLUTION; SUPERRESOLUTION; NETWORK;
D O I
10.3847/1538-4357/adb032
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
We present a novel deep generative model, named GenMDI, to improve the temporal resolution of line-of-sight (LOS) magnetograms of solar active regions (ARs) collected by the Michelson Doppler Imager (MDI) on board the Solar and Heliospheric Observatory. Unlike previous studies that focus primarily on spatial super-resolution of MDI magnetograms, our approach can perform temporal super-resolution, which generates and inserts synthetic data between observed MDI magnetograms, thus providing finer temporal structure and enhanced details in the LOS data. The GenMDI model employs a conditional diffusion process, which synthesizes images by considering both preceding and subsequent magnetograms, ensuring that the generated images are not only of high quality but also temporally coherent with the surrounding data. Experimental results show that the GenMDI model performs better than the traditional linear interpolation method, especially in ARs with dynamic evolution in magnetic fields.
引用
收藏
页数:9
相关论文
共 39 条
  • [21] Improving the spatial resolution of solar images using super-resolution diffusion generative adversarial networks
    Song, Wei
    Ma, Ying
    Sun, Haoying
    Zhao, Xiaobing
    Lin, Ganghua
    ASTRONOMY & ASTROPHYSICS, 2024, 686
  • [22] Super-Resolution of Solar Active Region Patches Using Generative Adversarial Networks
    Alshehhi, Rasha
    IMAGE ANALYSIS AND PROCESSING, ICIAP 2022, PT I, 2022, 13231 : 451 - 462
  • [23] Improving the Spatial Resolution of Solar Images Using Generative Adversarial Network and Self-attention Mechanism*
    Deng, Junlan
    Song, Wei
    Liu, Dan
    Li, Qin
    Lin, Ganghua
    Wang, Haimin
    ASTROPHYSICAL JOURNAL, 2021, 923 (01):
  • [24] Improved detection of far-side solar active regions using deep learning
    Felipe, T.
    Asensio Ramos, A.
    ASTRONOMY & ASTROPHYSICS, 2019, 632
  • [25] Predicting the evolution of photospheric magnetic field in solar active regions using deep learning
    白亮
    毕以
    杨波
    洪俊超
    徐喆
    尚振宏
    刘辉
    季海生
    季凯帆
    ResearchinAstronomyandAstrophysics, 2021, 21 (05) : 110 - 121
  • [26] Predicting the evolution of photospheric magnetic field in solar active regions using deep learning
    Bai, Liang
    Bi, Yi
    Yang, Bo
    Hong, Jun-Chao
    Xu, Zhe
    Shang, Zhen-Hong
    Liu, Hui
    Ji, Hai-Sheng
    Ji, Kai-Fan
    RESEARCH IN ASTRONOMY AND ASTROPHYSICS, 2021, 21 (05)
  • [27] Enhancing Rainfall Nowcasting Using Generative Deep Learning Model with Multi-Temporal Optical Flow
    Ha, Ji-Hoon
    Lee, Hyesook
    REMOTE SENSING, 2023, 15 (21)
  • [28] Improving Temporal Resolution of Pulmonary Perfusion Imaging in Rats Using the Partially Separable Functions Model
    Brinegar, Cornelius
    Schmitter, Sarah S.
    Mistry, Nilesh N.
    Johnson, G. Allan
    Liang, Zhi-Pei
    MAGNETIC RESONANCE IN MEDICINE, 2010, 64 (04) : 1162 - 1170
  • [29] Improving drug discovery with a hybrid deep generative model using reinforcement learning trained on a Bayesian docking approximation
    Xiong, Youjin
    Wang, Yiqing
    Wang, Yisheng
    Li, Chenmei
    Peng, Yusong
    Wu, Junyu
    Wang, Yiqing
    Gu, Lingyun
    Butch, Christopher J.
    JOURNAL OF COMPUTER-AIDED MOLECULAR DESIGN, 2023, 37 (11) : 507 - 517
  • [30] Improving drug discovery with a hybrid deep generative model using reinforcement learning trained on a Bayesian docking approximation
    Youjin Xiong
    Yiqing Wang
    Yisheng Wang
    Chenmei Li
    Peng Yusong
    Junyu Wu
    Yiqing Wang
    Lingyun Gu
    Christopher J. Butch
    Journal of Computer-Aided Molecular Design, 2023, 37 : 507 - 517