The integrated mode of communication and display effectively utilizes spatial-temporal flicker-fusion property of the human vision system and the fast frame rate of modern display to achieve additional information transmission, and expands the application scene of visible light communication. However, the frame rate limitations of the camera and the asynchrony between transmitter and receiver seriously restrict the transmission rate and accuracy. In this study, we achieved the integration of communication and display within a single-pixel imaging framework by constructing the spatial-temporal complementary modulation mode and image display mode. Meanwhile, leveraging the characteristic of single-pixel imaging that detects only light intensity, and combining it with the image display mode, we developed an internal synchronization mechanism. This mechanism enables the precise extraction of data frames and the accurate reconstruction of transmitted data. The experimental results demonstrate that this scheme can achieve the transmission of additional information while provide high fidelity display. The image-to-data frame ratio is 8:1, and the maximum error-free field angle is 170 degrees. Compared to other published methods, this scheme possesses a stronger noise resistance and a broader transmission range, which presenting a novel approach for integrated communication and display, and also extending application field of visible light communication.