Integrated dual-mode system of communication and display based on single-pixel imaging

被引:0
|
作者
Kang, Yi [1 ]
Zhao, Wenqing [1 ]
Pu, Shengli [1 ]
Zhang, Dawei [1 ,2 ]
机构
[1] Univ Shanghai Sci & Technol, Shanghai 200093, Peoples R China
[2] Shanghai Environm Biosafety Instruments & Equipmen, Shanghai 200093, Peoples R China
关键词
Single-pixel imaging; Dual-mode system; Spatial-temporal modulation; Human visual characteristics; LONG-DISTANCE; GHOST;
D O I
10.1016/j.displa.2025.102984
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
The integrated mode of communication and display effectively utilizes spatial-temporal flicker-fusion property of the human vision system and the fast frame rate of modern display to achieve additional information transmission, and expands the application scene of visible light communication. However, the frame rate limitations of the camera and the asynchrony between transmitter and receiver seriously restrict the transmission rate and accuracy. In this study, we achieved the integration of communication and display within a single-pixel imaging framework by constructing the spatial-temporal complementary modulation mode and image display mode. Meanwhile, leveraging the characteristic of single-pixel imaging that detects only light intensity, and combining it with the image display mode, we developed an internal synchronization mechanism. This mechanism enables the precise extraction of data frames and the accurate reconstruction of transmitted data. The experimental results demonstrate that this scheme can achieve the transmission of additional information while provide high fidelity display. The image-to-data frame ratio is 8:1, and the maximum error-free field angle is 170 degrees. Compared to other published methods, this scheme possesses a stronger noise resistance and a broader transmission range, which presenting a novel approach for integrated communication and display, and also extending application field of visible light communication.
引用
收藏
页数:11
相关论文
共 50 条
  • [21] Edge detection based on single-pixel imaging
    Ren, Hongdou
    Zhao, Shengmei
    Gruska, Jozef
    OPTICS EXPRESS, 2018, 26 (05): : 5501 - 5511
  • [22] Single-Pixel Imaging Based on Optical Fibers
    Tian, Yunfei
    Ding, Zixuan
    Feng, Haogong
    Zhu, Runze
    Chen, Ye
    Xu, Fei
    Lu, Yanqing
    IEEE PHOTONICS JOURNAL, 2020, 12 (06):
  • [23] Highly efficient single-pixel imaging system based on the STEAM structure
    Wang, Guoqing
    Zhao, Fang
    Xiao, Dongrui
    Shao, Liyang
    Zhou, Yuan
    Yu, Feihong
    Wang, Weizhi
    Liu, Huanhuan
    Wang, Chao
    Min, Rui
    Yan, Zhijun
    Shum, Perry Ping
    OPTICS EXPRESS, 2021, 29 (26) : 43203 - 43211
  • [24] Integrated Encapsulation and Implementation of a Linear-Mode APD Detector for Single-Pixel Imaging Lidar
    Lv, Akang
    Yuan, Kee
    Huang, Jian
    Shi, Dongfeng
    Zhang, Shiguo
    Chen, Yafeng
    He, Zixin
    PHOTONICS, 2023, 10 (09)
  • [25] CYCLOPS - SINGLE-PIXEL IMAGING LIDAR SYSTEM BASED ON COMPRESSIVE SENSING
    Magalhaes, F.
    Correia, M. V.
    Farahi, F.
    do Carmo, J. Pereira
    Araujo, F. M.
    INTERNATIONAL CONFERENCE ON SPACE OPTICS-ICSO 2014, 2014, 10563
  • [26] Confocal Single-Pixel Imaging
    Ahn, Cheolwoo
    Park, Jung-Hoon
    PHOTONICS, 2023, 10 (06)
  • [27] Single-pixel imaging with neutrons
    He, Yu-Hang
    Huang, Yi-Yi
    Zeng, Zhi-Rong
    Li, Yi-Fei
    Tan, Jun-Hao
    Chen, Li-Ming
    Wu, Ling-An
    Li, Ming-Fei
    Quan, Bao-Gang
    Wang, Song-Lin
    Liang, Tian-Jiao
    SCIENCE BULLETIN, 2021, 66 (02) : 133 - 138
  • [28] Single-pixel temporal imaging
    Zhao, Jiapeng
    Dai, Jianming
    Braverman, Boris
    Zhang, Xi-Cheng
    Boyd, Robert W.
    2021 CONFERENCE ON LASERS AND ELECTRO-OPTICS (CLEO), 2021,
  • [29] Dynamic Single-Pixel Imaging
    Yu Wenkai
    Tang Feiyao
    Wang Shuofei
    Wei Ning
    LASER & OPTOELECTRONICS PROGRESS, 2021, 58 (10)
  • [30] Single-pixel polarimetric imaging
    Duran, Vicente
    Clemente, Pere
    Fernandez-Alonso, Mercedes
    Tajahuerce, Enrique
    Lancis, Jesus
    OPTICS LETTERS, 2012, 37 (05) : 824 - 826