Programmable Single-Pixel Imaging

被引:2
|
作者
Shin, Zhen Yong [1 ]
Lin, Horng Sheng [1 ]
Chai, Tong-Yuen [1 ]
Wang, Xin [2 ]
Chua, Sing Yee [1 ]
机构
[1] Univ Tunku Abdul Rahman, Lee Kong Chian Fac Engn & Sci, Kajang 43000, Selangor, Malaysia
[2] Monash Univ Malaysia, Sch Engn, Jalan Lagoon Selatan, Bandar Sunway 47500, Selangor, Malaysia
关键词
Compressive sampling; sparsity; underdetermined systems of linear equation; signal recovery; SACCADES;
D O I
10.1109/icst46873.2019.9047713
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Conventional imaging sensors often reach their limits in terms of resolution and dynamic range. In addition, conventional imaging in invisible wavelengths is relatively more expensive and complicated. As an alternative, single-pixel cameras allow reduction of cost and complexity that would be otherwise required in a conventional multi-pixel camera. In terms of digital imaging, Nyquist-Shannon theorem states that to stably recover an image without introducing perceptible errors, the number of measurements and the number of image pixels are required to be at least the same. As the number of image pixels is ever increasing, increasing the number of measurements to fulfill Nyquist-Shannon theorem's requirements has become increasingly challenging. Since in many cases increasing the number of measurements means that the cost and time required are increasing accordingly as well. Therefore a mean to recover images from a number of measurements less than the number of pixels (sub-Nyquist measurements) is needed. The objective of this paper is to present and compare single-pixel imaging via compressive sensing/sampling (CS) and spatially-variant resolution (SVR) single -pixel imaging. Both methods are capable of recovering images stably from subNyquist measurements. The measurements and reconstructions of images were done in simulations. SVR single-pixel imaging reduces the number of measurement by sacrificing the resolution of the peripheral regions. This realizes the programmable imaging concept where multi-resolution can be adaptively applied to optimize the balance between image quality and number of measurement. This could benefit some imaging applications where a target in the region of interest (the fovea) is prioritized over the rest of the region (such as the background).
引用
收藏
页数:6
相关论文
共 50 条
  • [1] Hadamard single-pixel imaging versus Fourier single-pixel imaging
    Zhang, Zibang
    Wang, Xueying
    Zheng, Guoan
    Zhong, Jingang
    OPTICS EXPRESS, 2017, 25 (16): : 19619 - 19639
  • [2] Programmable spatially variant single-pixel imaging based on compressive sensing
    Shin, Zhenyong
    Lin, Horng Sheng
    Chai, Tong-Yuen
    Wang, Xin
    Chua, Sing Yee
    JOURNAL OF ELECTRONIC IMAGING, 2021, 30 (02)
  • [3] Confocal Single-Pixel Imaging
    Ahn, Cheolwoo
    Park, Jung-Hoon
    PHOTONICS, 2023, 10 (06)
  • [4] Single-pixel imaging with neutrons
    He, Yu-Hang
    Huang, Yi-Yi
    Zeng, Zhi-Rong
    Li, Yi-Fei
    Tan, Jun-Hao
    Chen, Li-Ming
    Wu, Ling-An
    Li, Ming-Fei
    Quan, Bao-Gang
    Wang, Song-Lin
    Liang, Tian-Jiao
    SCIENCE BULLETIN, 2021, 66 (02) : 133 - 138
  • [5] Dynamic Single-Pixel Imaging
    Yu Wenkai
    Tang Feiyao
    Wang Shuofei
    Wei Ning
    LASER & OPTOELECTRONICS PROGRESS, 2021, 58 (10)
  • [6] Single-pixel temporal imaging
    Zhao, Jiapeng
    Dai, Jianming
    Braverman, Boris
    Zhang, Xi-Cheng
    Boyd, Robert W.
    2021 CONFERENCE ON LASERS AND ELECTRO-OPTICS (CLEO), 2021,
  • [7] Single-pixel polarimetric imaging
    Duran, Vicente
    Clemente, Pere
    Fernandez-Alonso, Mercedes
    Tajahuerce, Enrique
    Lancis, Jesus
    OPTICS LETTERS, 2012, 37 (05) : 824 - 826
  • [8] Single-pixel depth imaging
    Wang, Huayi
    Bian, Liheng
    Zhang, Jun
    OPTOELECTRONIC IMAGING AND MULTIMEDIA TECHNOLOGY VI, 2019, 11187
  • [9] Single-pixel hyperspectral imaging
    Suo, Jinli
    Wang, Yuwang
    Bian, Liheng
    Dai, Qionghai
    OPTOELECTRONIC IMAGING AND MULTIMEDIA TECHNOLOGY IV, 2016, 10020
  • [10] Colour imaging with single-pixel detectors
    Noriaki Horiuchi
    Nature Photonics, 2013, 7 : 943 - 943