MORE: a multi-omics data-driven hypergraph integration network for biomedical data classification and biomarker identification

被引:0
|
作者
Wang, Yuhan [1 ]
Wang, Zhikang [2 ,3 ]
Yu, Xuan [4 ]
Wang, Xiaoyu [2 ,3 ]
Song, Jiangning [2 ,3 ,5 ]
Yu, Dong-Jun [1 ]
Ge, Fang [6 ,7 ]
机构
[1] Nanjing Univ Sci & Technol, Sch Comp Sci & Engn, 200 Xiaolingwei, Nanjing 210094, Peoples R China
[2] Monash Univ, Biomed Discovery Inst, Wellington Rd, Melbourne, Vic 3800, Australia
[3] Monash Univ, Dept Biochem & Mol Biol, Wellington Rd, Melbourne, Vic 3800, Australia
[4] City Univ Hong Kong, Dept Comp Sci, Hong Kong 999077, Peoples R China
[5] Monash Univ, Data Futures Inst, Wellington Rd, Clayton, Vic 3800, Australia
[6] Nanjing Univ Posts & Telecommun, State Key Lab Organ Elect & Informat Displays, 9 Wenyuan, Nanjing 210023, Peoples R China
[7] Nanjing Univ Posts &Telecommun, Inst Adv Mat IAM, 9 Wenyuan, Nanjing 210023, Peoples R China
基金
中国国家自然科学基金;
关键词
comprehensive hyperedge group; multi-omics hypergraph encoding module; multi-omics self-attention mechanism; identify disease-related biomarkers; BREAST-CANCER; CELLS;
D O I
10.1093/bib/bbae658
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
High-throughput sequencing methods have brought about a huge change in omics-based biomedical study. Integrating various omics data is possibly useful for identifying some correlations across data modalities, thus improving our understanding of the underlying biological mechanisms and complexity. Nevertheless, most existing graph-based feature extraction methods overlook the complementary information and correlations across modalities. Moreover, these methods tend to treat the features of each omics modality equally, which contradicts current biological principles. To solve these challenges, we introduce a novel approach for integrating multi-omics data termed Multi-Omics hypeRgraph integration nEtwork (MORE). MORE initially constructs a comprehensive hyperedge group by extensively investigating the informative correlations within and across modalities. Subsequently, the multi-omics hypergraph encoding module is employed to learn the enriched omics-specific information. Afterward, the multi-omics self-attention mechanism is then utilized to adaptatively aggregate valuable correlations across modalities for representation learning and making the final prediction. We assess MORE's performance on datasets characterized by message RNA (mRNA) expression, Deoxyribonucleic Acid (DNA) methylation, and microRNA (miRNA) expression for Alzheimer's disease, invasive breast carcinoma, and glioblastoma. The results from three classification tasks highlight the competitive advantage of MORE in contrast with current state-of-the-art (SOTA) methods. Moreover, the results also show that MORE has the capability to identify a greater variety of disease-related biomarkers compared to existing methods, highlighting its advantages in biomedical data mining and interpretation. Overall, MORE can be investigated as a valuable tool for facilitating multi-omics analysis and novel biomarker discovery. Our code and data can be publicly accessed at https://github.com/Wangyuhanxx/MORE.
引用
收藏
页数:11
相关论文
共 50 条
  • [41] ‘Multi-omics’ data integration: applications in probiotics studies
    Iliya Dauda Kwoji
    Olayinka Ayobami Aiyegoro
    Moses Okpeku
    Matthew Adekunle Adeleke
    npj Science of Food, 7
  • [42] Methods for the integration of multi-omics data: mathematical aspects
    Bersanelli, Matteo
    Mosca, Ettore
    Remondini, Daniel
    Giampieri, Enrico
    Sala, Claudia
    Castellani, Gastone
    Milanesi, Luciano
    BMC BIOINFORMATICS, 2016, 17
  • [43] Prospects and challenges of multi-omics data integration in toxicology
    Canzler, Sebastian
    Schor, Jana
    Busch, Wibke
    Schubert, Kristin
    Rolle-Kampczyk, Ulrike E.
    Seitz, Herve
    Kamp, Hennicke
    von Bergen, Martin
    Buesen, Roland
    Hackermueller, Joerg
    ARCHIVES OF TOXICOLOGY, 2020, 94 (02) : 371 - 388
  • [44] Vertical and horizontal integration of multi-omics data with miodin
    Ulfenborg, Benjamin
    BMC BIOINFORMATICS, 2019, 20 (01)
  • [45] 'Multi-omics' data integration: applications in probiotics studies
    Kwoji, Iliya Dauda
    Aiyegoro, Olayinka Ayobami
    Okpeku, Moses
    Adeleke, Matthew Adekunle
    NPJ SCIENCE OF FOOD, 2023, 7 (01)
  • [46] Review on Integration Analysis and Application of Multi-omics Data
    Zhong, Yating
    Lin, Yanmei
    Chen, Dingjia
    Peng, Yuzhong
    Zeng, Yuanpeng
    Computer Engineering and Applications, 2024, 57 (23) : 1 - 17
  • [47] A Commentary on Multi-omics Data Integration in Systems Vaccinology
    Shannon, Casey P.
    Lee, Amy H. Y.
    Tebbutt, Scott J.
    Singh, Amrit
    JOURNAL OF MOLECULAR BIOLOGY, 2024, 436 (08)
  • [48] Vertical and horizontal integration of multi-omics data with miodin
    Benjamin Ulfenborg
    BMC Bioinformatics, 20
  • [49] Machine learning for multi-omics data integration in cancer
    Cai, Zhaoxiang
    Poulos, Rebecca C.
    Liu, Jia
    Zhong, Qing
    ISCIENCE, 2022, 25 (02)
  • [50] MULTI-OMICS DATA INTEGRATION IN THE CONTEXT OF PRIMARY GLOMERULONEPHRITIS
    Fernandes, Marco
    Delles, Christian
    Husi, Holger
    NEPHROLOGY DIALYSIS TRANSPLANTATION, 2016, 31 : 165 - 165