MORE: a multi-omics data-driven hypergraph integration network for biomedical data classification and biomarker identification

被引:0
|
作者
Wang, Yuhan [1 ]
Wang, Zhikang [2 ,3 ]
Yu, Xuan [4 ]
Wang, Xiaoyu [2 ,3 ]
Song, Jiangning [2 ,3 ,5 ]
Yu, Dong-Jun [1 ]
Ge, Fang [6 ,7 ]
机构
[1] Nanjing Univ Sci & Technol, Sch Comp Sci & Engn, 200 Xiaolingwei, Nanjing 210094, Peoples R China
[2] Monash Univ, Biomed Discovery Inst, Wellington Rd, Melbourne, Vic 3800, Australia
[3] Monash Univ, Dept Biochem & Mol Biol, Wellington Rd, Melbourne, Vic 3800, Australia
[4] City Univ Hong Kong, Dept Comp Sci, Hong Kong 999077, Peoples R China
[5] Monash Univ, Data Futures Inst, Wellington Rd, Clayton, Vic 3800, Australia
[6] Nanjing Univ Posts & Telecommun, State Key Lab Organ Elect & Informat Displays, 9 Wenyuan, Nanjing 210023, Peoples R China
[7] Nanjing Univ Posts &Telecommun, Inst Adv Mat IAM, 9 Wenyuan, Nanjing 210023, Peoples R China
基金
中国国家自然科学基金;
关键词
comprehensive hyperedge group; multi-omics hypergraph encoding module; multi-omics self-attention mechanism; identify disease-related biomarkers; BREAST-CANCER; CELLS;
D O I
10.1093/bib/bbae658
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
High-throughput sequencing methods have brought about a huge change in omics-based biomedical study. Integrating various omics data is possibly useful for identifying some correlations across data modalities, thus improving our understanding of the underlying biological mechanisms and complexity. Nevertheless, most existing graph-based feature extraction methods overlook the complementary information and correlations across modalities. Moreover, these methods tend to treat the features of each omics modality equally, which contradicts current biological principles. To solve these challenges, we introduce a novel approach for integrating multi-omics data termed Multi-Omics hypeRgraph integration nEtwork (MORE). MORE initially constructs a comprehensive hyperedge group by extensively investigating the informative correlations within and across modalities. Subsequently, the multi-omics hypergraph encoding module is employed to learn the enriched omics-specific information. Afterward, the multi-omics self-attention mechanism is then utilized to adaptatively aggregate valuable correlations across modalities for representation learning and making the final prediction. We assess MORE's performance on datasets characterized by message RNA (mRNA) expression, Deoxyribonucleic Acid (DNA) methylation, and microRNA (miRNA) expression for Alzheimer's disease, invasive breast carcinoma, and glioblastoma. The results from three classification tasks highlight the competitive advantage of MORE in contrast with current state-of-the-art (SOTA) methods. Moreover, the results also show that MORE has the capability to identify a greater variety of disease-related biomarkers compared to existing methods, highlighting its advantages in biomedical data mining and interpretation. Overall, MORE can be investigated as a valuable tool for facilitating multi-omics analysis and novel biomarker discovery. Our code and data can be publicly accessed at https://github.com/Wangyuhanxx/MORE.
引用
收藏
页数:11
相关论文
共 50 条
  • [31] Multi-omics Data Integration Model based on Isomap and Convolutional Neural Network
    Alkhateeb, Abedalrhman
    ElKarami, Bashier
    Qattous, Hazem
    Al-refai, Abdullah
    AlAfeshat, Noor
    Shahrrava, Behnam
    Azzeh, Mohammad
    2022 21ST IEEE INTERNATIONAL CONFERENCE ON MACHINE LEARNING AND APPLICATIONS, ICMLA, 2022, : 1381 - 1385
  • [32] Interpretation of network-based integration from multi-omics longitudinal data
    Bodein, Antoine
    Scott-Boyer, Marie-Pier
    Perin, Olivier
    Kim-Anh Le Cao
    Droit, Arnaud
    NUCLEIC ACIDS RESEARCH, 2022, 50 (05) : E27
  • [33] PaCMAP-embedded convolutional neural network for multi-omics data integration
    Qattous, Hazem
    Azzeh, Mohammad
    Ibrahim, Rahmeh
    Al-Ghafer, Ibrahim Abed
    Al Sorkhy, Mohammad
    Alkhateeb, Abedalrhman
    HELIYON, 2024, 10 (01)
  • [34] Prospects and challenges of multi-omics data integration in toxicology
    Sebastian Canzler
    Jana Schor
    Wibke Busch
    Kristin Schubert
    Ulrike E. Rolle-Kampczyk
    Hervé Seitz
    Hennicke Kamp
    Martin von Bergen
    Roland Buesen
    Jörg Hackermüller
    Archives of Toxicology, 2020, 94 : 371 - 388
  • [35] A survey on data integration for multi-omics sample clustering
    Lovino, Marta
    Randazzo, Vincenzo
    Ciravegna, Gabriele
    Barbiero, Pietro
    Ficarra, Elisa
    Cirrincione, Giansalvo
    NEUROCOMPUTING, 2022, 488 : 494 - 508
  • [36] Methods for the integration of multi-omics data: mathematical aspects
    Matteo Bersanelli
    Ettore Mosca
    Daniel Remondini
    Enrico Giampieri
    Claudia Sala
    Gastone Castellani
    Luciano Milanesi
    BMC Bioinformatics, 17
  • [37] Multi-omics Data Integration, Interpretation, and Its Application
    Subramanian, Indhupriya
    Verma, Srikant
    Kumar, Shiva
    Jere, Abhay
    Anamika, Krishanpal
    BIOINFORMATICS AND BIOLOGY INSIGHTS, 2020, 14
  • [38] Multi-omics data integration approaches for precision oncology
    Correa-Aguila, Raidel
    Alonso-Pupo, Niuxia
    Hernandez-Rodriguez, Erix W.
    MOLECULAR OMICS, 2022, 18 (06) : 469 - 479
  • [39] Integration of Multi-Omics Data to Identify Cancer Biomarkers
    Li, Peng
    Sun, Bo
    JOURNAL OF INFORMATION TECHNOLOGY RESEARCH, 2022, 15 (01)
  • [40] Multi-Omics Factor Analysis-a framework for unsupervised integration of multi-omics data sets
    Argelaguet, Ricard
    Velten, Britta
    Arnol, Damien
    Dietrich, Sascha
    Zenz, Thorsten
    Marioni, John C.
    Buettner, Florian
    Huber, Wolfgang
    Stegle, Oliver
    MOLECULAR SYSTEMS BIOLOGY, 2018, 14 (06)