MORE: a multi-omics data-driven hypergraph integration network for biomedical data classification and biomarker identification

被引:0
|
作者
Wang, Yuhan [1 ]
Wang, Zhikang [2 ,3 ]
Yu, Xuan [4 ]
Wang, Xiaoyu [2 ,3 ]
Song, Jiangning [2 ,3 ,5 ]
Yu, Dong-Jun [1 ]
Ge, Fang [6 ,7 ]
机构
[1] Nanjing Univ Sci & Technol, Sch Comp Sci & Engn, 200 Xiaolingwei, Nanjing 210094, Peoples R China
[2] Monash Univ, Biomed Discovery Inst, Wellington Rd, Melbourne, Vic 3800, Australia
[3] Monash Univ, Dept Biochem & Mol Biol, Wellington Rd, Melbourne, Vic 3800, Australia
[4] City Univ Hong Kong, Dept Comp Sci, Hong Kong 999077, Peoples R China
[5] Monash Univ, Data Futures Inst, Wellington Rd, Clayton, Vic 3800, Australia
[6] Nanjing Univ Posts & Telecommun, State Key Lab Organ Elect & Informat Displays, 9 Wenyuan, Nanjing 210023, Peoples R China
[7] Nanjing Univ Posts &Telecommun, Inst Adv Mat IAM, 9 Wenyuan, Nanjing 210023, Peoples R China
基金
中国国家自然科学基金;
关键词
comprehensive hyperedge group; multi-omics hypergraph encoding module; multi-omics self-attention mechanism; identify disease-related biomarkers; BREAST-CANCER; CELLS;
D O I
10.1093/bib/bbae658
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
High-throughput sequencing methods have brought about a huge change in omics-based biomedical study. Integrating various omics data is possibly useful for identifying some correlations across data modalities, thus improving our understanding of the underlying biological mechanisms and complexity. Nevertheless, most existing graph-based feature extraction methods overlook the complementary information and correlations across modalities. Moreover, these methods tend to treat the features of each omics modality equally, which contradicts current biological principles. To solve these challenges, we introduce a novel approach for integrating multi-omics data termed Multi-Omics hypeRgraph integration nEtwork (MORE). MORE initially constructs a comprehensive hyperedge group by extensively investigating the informative correlations within and across modalities. Subsequently, the multi-omics hypergraph encoding module is employed to learn the enriched omics-specific information. Afterward, the multi-omics self-attention mechanism is then utilized to adaptatively aggregate valuable correlations across modalities for representation learning and making the final prediction. We assess MORE's performance on datasets characterized by message RNA (mRNA) expression, Deoxyribonucleic Acid (DNA) methylation, and microRNA (miRNA) expression for Alzheimer's disease, invasive breast carcinoma, and glioblastoma. The results from three classification tasks highlight the competitive advantage of MORE in contrast with current state-of-the-art (SOTA) methods. Moreover, the results also show that MORE has the capability to identify a greater variety of disease-related biomarkers compared to existing methods, highlighting its advantages in biomedical data mining and interpretation. Overall, MORE can be investigated as a valuable tool for facilitating multi-omics analysis and novel biomarker discovery. Our code and data can be publicly accessed at https://github.com/Wangyuhanxx/MORE.
引用
收藏
页数:11
相关论文
共 50 条
  • [21] Multi-Omics Data Integration Patient Classification Method Based on Deep Dense Residual Shrinkage Network
    Li, Wenyao
    Lin, Kai
    Hou, Yaqing
    Zhang, Qiang
    2022 IEEE 34TH INTERNATIONAL CONFERENCE ON TOOLS WITH ARTIFICIAL INTELLIGENCE, ICTAI, 2022, : 1098 - 1104
  • [22] Deep-Learning Algorithm and Concomitant Biomarker Identification for NSCLC Prediction Using Multi-Omics Data Integration
    Park, Min-Koo
    Lim, Jin-Muk
    Jeong, Jinwoo
    Jang, Yeongjae
    Lee, Ji-Won
    Lee, Jeong-Chan
    Kim, Hyungyu
    Koh, Euiyul
    Hwang, Sung-Joo
    Kim, Hong-Gee
    Kim, Keun-Cheol
    BIOMOLECULES, 2022, 12 (12)
  • [23] Multi-Affinity network integration based on multi-omics data for tumor stratification
    Li, Feng
    Gao, Yanru
    Sun, Zhensheng
    Li, Shengjun
    Shang, Junliang
    Liu, Jin-Xing
    BIOMEDICAL SIGNAL PROCESSING AND CONTROL, 2025, 103
  • [24] MOGONET integrates multi-omics data using graph convolutional networks allowing patient classification and biomarker identification
    Wang, Tongxin
    Shao, Wei
    Huang, Zhi
    Tang, Haixu
    Zhang, Jie
    Ding, Zhengming
    Huang, Kun
    NATURE COMMUNICATIONS, 2021, 12 (01)
  • [25] MOGONET integrates multi-omics data using graph convolutional networks allowing patient classification and biomarker identification
    Tongxin Wang
    Wei Shao
    Zhi Huang
    Haixu Tang
    Jie Zhang
    Zhengming Ding
    Kun Huang
    Nature Communications, 12
  • [26] Identification of Osteoporosis Biomarkers and Biological Interactions Using Multi-omics Data Integration
    Liu, Anqi
    Jiang, Lindong
    Su, Kuan-Jui
    Zhang, Xiao
    Gong, Yun
    Qiu, Chuan
    Luo, Zhe
    Tian, Qing
    Ding, Zhengming
    Shen, Hui
    Deng, Hong-Wen
    JOURNAL OF BONE AND MINERAL RESEARCH, 2023, 38 : 152 - 153
  • [27] MDICC: novel method for multi-omics data integration and cancer subtype identification
    Yang, Ying
    Tian, Sha
    Qiu, Yushan
    Zhao, Pu
    Zou, Quan
    BRIEFINGS IN BIOINFORMATICS, 2022, 23 (03)
  • [28] Simultaneous Integration of Multi-omics Data Improves the Identification of Cancer Driver Modules
    Silverbush, Dana
    Cristea, Simona
    Yanovich-Arad, Gali
    Geiger, Tamar
    Beerenwinkel, Niko
    Sharan, Roded
    CELL SYSTEMS, 2019, 8 (05) : 456 - +
  • [29] Plant Regulomics: a data-driven interface for retrieving upstream regulators from plant multi-omics data
    Ran, Xiaojuan
    Zhao, Fei
    Wang, Yuejun
    Liu, Jian
    Zhuang, Yili
    Ye, Luhuan
    Qi, Meifang
    Cheng, Jingfei
    Zhang, Yijing
    PLANT JOURNAL, 2020, 101 (01): : 237 - 248
  • [30] Network-based integration of multi-omics data for prioritizing cancer genes
    Dimitrakopoulos, Christos
    Hindupur, Sravanth Kumar
    Haefliger, Luca
    Behr, Jonas
    Montazeri, Hesam
    Hall, Michael N.
    Beerenwinkel, Niko
    BIOINFORMATICS, 2018, 34 (14) : 2441 - 2448