Magic running- and standing-wave optical traps for Rydberg atoms

被引:0
|
作者
Ahlheit, Lukas [1 ]
Nill, Chris [1 ,2 ,3 ]
Svirskiy, Daniil [1 ]
de Haan, Jan [1 ]
Schroers, Simon [1 ]
Alt, Wolfgang [1 ]
Stiesdal, Nina [1 ]
Lesanovsky, Igor [2 ,3 ,4 ,5 ]
Hofferberth, Sebastian [1 ]
机构
[1] Univ Bonn, Inst Angew Phys, Wegelerstr 8, D-53115 Bonn, Germany
[2] Univ Tubingen, Inst Theoret Phys, Morgenstelle 14, D-72076 Tubingen, Germany
[3] Univ Tubingen, Ctr Integrated Quantum Sci & Technol, Morgenstelle 14, D-72076 Tubingen, Germany
[4] Univ Nottingham, Sch Phys & Astron, Nottingham NG7 2RD, England
[5] Univ Nottingham, Ctr Math & Theoret Phys Quantum Nonequilibrium Sys, Nottingham NG7 2RD, England
基金
欧洲研究理事会;
关键词
NONLINEAR OPTICS; QUANTUM MEMORY; LIGHT; PHOTONS; STORAGE;
D O I
10.1103/PhysRevA.111.013115
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Magic trapping of ground and Rydberg states, which equalizes the AC Stark shifts of these two levels, enables increased ground-to-Rydberg state coherence times. We measure via photon storage and retrieval how the ground-to-Rydberg state coherence depends on trap wavelength for two different traps and find different optimal wavelengths for a one-dimensional optical lattice trap and a running wave optical dipole trap. Comparison to theory reveals that this is caused by the Rydberg electron sampling different potential landscapes. The observed difference increases for higher principal quantum numbers, where the extent of the Rydberg electron wave function becomes larger than the optical lattice period. Our analysis shows that optimal magic trapping conditions depend on the trap geometry, in particular for optical lattices and tweezers.
引用
收藏
页数:10
相关论文
共 50 条
  • [41] OPTICAL ECHOES GENERATED BY STANDING-WAVE FIELDS - OBSERVATIONS IN ATOMIC VAPORS
    KACHRU, R
    MOSSBERG, TW
    WHITTAKER, E
    HARTMANN, SR
    OPTICS COMMUNICATIONS, 1979, 31 (02) : 223 - 227
  • [42] Integrated standing-wave transform spectrometer for near infrared optical analysis
    Bhalotra, SR
    Kung, HL
    Fu, J
    Helman, NC
    Levi, O
    Miller, DAB
    Harris, JS Jr
    2002 IEEE/LEOS ANNUAL MEETING CONFERENCE PROCEEDINGS, VOLS 1 AND 2, 2002, : 105 - 106
  • [43] ATOM-OPTICAL PROPERTIES OF A STANDING-WAVE LIGHT-FIELD
    MCCLELLAND, JJ
    JOURNAL OF THE OPTICAL SOCIETY OF AMERICA B-OPTICAL PHYSICS, 1995, 12 (10) : 1761 - 1768
  • [44] Variable standing-wave ratio magnetostatic wave-optical interaction in YIG films
    Butler, JC
    Kramer, JJ
    APPLIED OPTICS, 1996, 35 (30): : 5988 - 5993
  • [45] THEORY OF A RESONANT INTERACTION OF A GAS OF ATOMS WITH STANDING-WAVE PULSES SEPARATED IN TIME.
    Dubetskii, B.Ya.
    Semibalamut, V.M.
    Soviet journal of quantum electronics, 1982, 12 (08): : 1081 - 1083
  • [46] Nanolithography with metastable helium atoms in a high-power standing-wave light field
    Petra, SJH
    Feenstra, L
    Hogervorst, W
    Vassen, W
    APPLIED PHYSICS B-LASERS AND OPTICS, 2004, 78 (02): : 133 - 136
  • [47] Nanolithography with metastable helium atoms in a high-power standing-wave light field
    S.J.H. Petra
    L. Feenstra
    W. Hogervorst
    W. Vassen
    Applied Physics B, 2004, 78 : 133 - 136
  • [48] 1ST OBSERVATION OF FORCES ON 3-LEVEL ATOMS IN RAMAN RESONANT STANDING-WAVE OPTICAL-FIELDS
    HEMMER, PR
    SHAHRIAR, MS
    PRENTISS, MG
    KATZ, DP
    BERGGREN, K
    MERVIS, J
    BIGELOW, NP
    PHYSICAL REVIEW LETTERS, 1992, 68 (21) : 3148 - 3151
  • [49] Optical Talbot carpet with atomic density gratings obtained by standing-wave manipulation
    Li, Chen
    Zhou, Tianwei
    Zhai, Yueyang
    Yue, Xuguang
    Xiang, Jinggang
    Yang, Shifeng
    Xiong, Wei
    Chen, Xuzong
    PHYSICAL REVIEW A, 2017, 95 (03)
  • [50] A SIMPLE METHOD FOR CREATING A LARGE PERIOD OPTICAL STANDING-WAVE FOR ATOM MANIPULATION
    GILTNER, DM
    MCGOWAN, RW
    MELANDER, N
    LEE, SA
    OPTICS COMMUNICATIONS, 1994, 107 (3-4) : 227 - 230