Magic running- and standing-wave optical traps for Rydberg atoms

被引:0
|
作者
Ahlheit, Lukas [1 ]
Nill, Chris [1 ,2 ,3 ]
Svirskiy, Daniil [1 ]
de Haan, Jan [1 ]
Schroers, Simon [1 ]
Alt, Wolfgang [1 ]
Stiesdal, Nina [1 ]
Lesanovsky, Igor [2 ,3 ,4 ,5 ]
Hofferberth, Sebastian [1 ]
机构
[1] Univ Bonn, Inst Angew Phys, Wegelerstr 8, D-53115 Bonn, Germany
[2] Univ Tubingen, Inst Theoret Phys, Morgenstelle 14, D-72076 Tubingen, Germany
[3] Univ Tubingen, Ctr Integrated Quantum Sci & Technol, Morgenstelle 14, D-72076 Tubingen, Germany
[4] Univ Nottingham, Sch Phys & Astron, Nottingham NG7 2RD, England
[5] Univ Nottingham, Ctr Math & Theoret Phys Quantum Nonequilibrium Sys, Nottingham NG7 2RD, England
基金
欧洲研究理事会;
关键词
NONLINEAR OPTICS; QUANTUM MEMORY; LIGHT; PHOTONS; STORAGE;
D O I
10.1103/PhysRevA.111.013115
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Magic trapping of ground and Rydberg states, which equalizes the AC Stark shifts of these two levels, enables increased ground-to-Rydberg state coherence times. We measure via photon storage and retrieval how the ground-to-Rydberg state coherence depends on trap wavelength for two different traps and find different optimal wavelengths for a one-dimensional optical lattice trap and a running wave optical dipole trap. Comparison to theory reveals that this is caused by the Rydberg electron sampling different potential landscapes. The observed difference increases for higher principal quantum numbers, where the extent of the Rydberg electron wave function becomes larger than the optical lattice period. Our analysis shows that optimal magic trapping conditions depend on the trap geometry, in particular for optical lattices and tweezers.
引用
收藏
页数:10
相关论文
共 50 条
  • [31] Subwavelength, standing-wave optical trap based on photonic jets
    Minin, I. V.
    Minin, O. V.
    Pacheo-Pena, V.
    Beruete, M.
    QUANTUM ELECTRONICS, 2016, 46 (06) : 555 - 557
  • [32] Controllable optical transparency using an acoustic standing-wave device
    Moradi, Kamran
    El-Zahab, Bilal
    OPTICAL MATERIALS, 2015, 47 : 582 - 585
  • [33] Influence of atomic motion on a microlaser in an optical standing-wave cavity
    Zhang, JT
    Feng, XL
    Zhang, WQ
    Xu, ZZ
    CHINESE PHYSICS LETTERS, 2002, 19 (05) : 670 - 673
  • [34] Energy shift and state mixing of Rydberg atoms in ponderomotive optical traps
    Wang, Xiao
    Robicheaux, F.
    JOURNAL OF PHYSICS B-ATOMIC MOLECULAR AND OPTICAL PHYSICS, 2016, 49 (16)
  • [35] Divalent Rydberg atoms in optical lattices: Intensity landscape and magic trapping
    Topcu, Turker
    Derevianko, Andrei
    PHYSICAL REVIEW A, 2014, 89 (02):
  • [36] Numerical simulations on the motion of atoms travelling through a standing-wave light field
    Petra, SJH
    van Leeuwen, KAH
    Feenstra, L
    Hogervorst, W
    Vassen, W
    EUROPEAN PHYSICAL JOURNAL D, 2003, 27 (01): : 83 - 91
  • [37] Single atoms in a standing-wave dipole trap -: art. no. 033403
    Alt, W
    Schrader, D
    Kuhr, S
    Müller, M
    Gomer, V
    Meschede, D
    PHYSICAL REVIEW A, 2003, 67 (03):
  • [38] Numerical simulations on the motion of atoms travelling through a standing-wave light field
    S. J. H. Petra
    K. A. H. van Leeuwen
    L. Feenstra
    W. Hogervorst
    W. Vassen
    The European Physical Journal D - Atomic, Molecular, Optical and Plasma Physics, 2003, 27 : 83 - 91
  • [39] STANDING-WAVE OPTICAL PHONONS CONFINED IN ULTRATHIN OVERLAYERS OF IONIC MATERIALS
    SENET, P
    LAMBIN, P
    LUCAS, AA
    PHYSICAL REVIEW LETTERS, 1995, 74 (04) : 570 - 573
  • [40] Optimal profile for a Gaussian standing-wave atom-optical lens
    Behringer, RE
    Natarajan, V
    Timp, G
    OPTICS LETTERS, 1997, 22 (02) : 114 - 116