BACT: nonparametric Bayesian cell typing for single-cell spatial transcriptomics data

被引:0
|
作者
Yan, Yinqiao [1 ]
Luo, Xiangyu [2 ]
机构
[1] Beijing Univ Technol, Sch Math Stat & Mech, 100 Pingleyuan, Beijing 100124, Peoples R China
[2] Renmin Univ China, Inst Stat & Big Data, 59 Zhongguancun St, Beijing 100872, Peoples R China
基金
中国国家自然科学基金;
关键词
Bayesian inference; cell typing; spatial pattern; single-cell spatial transcriptomics; RESOLVED TRANSCRIPTOMICS;
D O I
10.1093/bib/bbae689
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
The spatial transcriptomics is a rapidly evolving biological technology that simultaneously measures the gene expression profiles and the spatial locations of spots. With progressive advances, current spatial transcriptomic techniques can achieve the cellular or even the subcellular resolution, making it possible to explore the fine-grained spatial pattern of cell types within one tissue section. However, most existing cell spatial clustering methods require a correct specification of the cell type number, which is hard to determine in the practical exploratory data analysis. To address this issue, we present a nonparametric Bayesian model BACT to perform BAyesian Cell Typing by utilizing gene expression information and spatial coordinates of cells. BACT incorporates a nonparametric Potts prior to induce neighboring cells' spatial dependency, and, more importantly, it can automatically learn the cell type number directly from the data without prespecification. Evaluations on three single-cell spatial transcriptomic datasets demonstrate the better performance of BACT than competing spatial cell typing methods. The R package and the user manual of BACT are publicly available at https://github.com/yinqiaoyan/BACT.
引用
收藏
页数:9
相关论文
共 50 条
  • [11] Single-cell and spatial transcriptomics reveal somitogenesis in gastruloids
    van den Brink, Susanne C.
    Alemany, Anna
    van Batenburg, Vincent
    Moris, Naomi
    Blotenburg, Marloes
    Vivie, Judith
    Baillie-Johnson, Peter
    Nichols, Jennifer
    Sonnen, Katharina F.
    Martinez Arias, Alfonso
    van Oudenaarden, Alexander
    NATURE, 2020, 582 (7812) : 405 - +
  • [12] Embryo-scale, single-cell spatial transcriptomics
    Srivatsan, Sanjay R.
    Regier, Mary C.
    Barkan, Eliza
    Franks, Jennifer M.
    Packer, Jonathan S.
    Grosjean, Parker
    Duran, Madeleine
    Saxton, Sarah
    Ladd, Jon J.
    Spielmann, Malte
    Lois, Carlos
    Lampe, Paul D.
    Shendure, Jay
    Stevens, Kelly R.
    Trapnell, Cole
    SCIENCE, 2021, 373 (6550) : 111 - +
  • [13] Liver in infections: a single-cell and spatial transcriptomics perspective
    Ju Zou
    Jie Li
    Xiao Zhong
    Daolin Tang
    Xuegong Fan
    Ruochan Chen
    Journal of Biomedical Science, 30
  • [14] Single-cell and spatial transcriptomics reveal somitogenesis in gastruloids
    Susanne C. van den Brink
    Anna Alemany
    Vincent van Batenburg
    Naomi Moris
    Marloes Blotenburg
    Judith Vivié
    Peter Baillie-Johnson
    Jennifer Nichols
    Katharina F. Sonnen
    Alfonso Martinez Arias
    Alexander van Oudenaarden
    Nature, 2020, 582 : 405 - 409
  • [15] Embryo-scale, single-cell spatial transcriptomics
    Srivatsan, S.
    Regier, M.
    Barkan, E.
    Packer, J.
    Grosjean, P.
    Saxton, S.
    Ladd, J.
    Spielmann, M.
    Lampe, P.
    Shendure, J.
    Stevens, K.
    Trapnell, C.
    EUROPEAN JOURNAL OF HUMAN GENETICS, 2020, 28 (SUPPL 1) : 9 - 9
  • [16] Single-cell spatial transcriptomics analysis of a regenerating liver
    Monga, Satdarshan P.
    Ko, Sungjin
    Hu, Shikai
    Singh, Sucha
    Poddar, Minakshi
    FASEB JOURNAL, 2022, 36
  • [17] Encoding Method of Single-cell Spatial Transcriptomics Sequencing
    Zhou, Ying
    Jia, Erteng
    Pan, Min
    Zhao, Xiangwei
    Ge, Qinyu
    INTERNATIONAL JOURNAL OF BIOLOGICAL SCIENCES, 2020, 16 (14): : 2663 - 2674
  • [18] Liver in infections: a single-cell and spatial transcriptomics perspective
    Zou, Ju
    Li, Jie
    Zhong, Xiao
    Tang, Daolin
    Fan, Xuegong
    Chen, Ruochan
    JOURNAL OF BIOMEDICAL SCIENCE, 2023, 30 (01)
  • [20] STEM enables mapping of single-cell and spatial transcriptomics data with transfer learning
    Minsheng Hao
    Erpai Luo
    Yixin Chen
    Yanhong Wu
    Chen Li
    Sijie Chen
    Haoxiang Gao
    Haiyang Bian
    Jin Gu
    Lei Wei
    Xuegong Zhang
    Communications Biology, 7