BACT: nonparametric Bayesian cell typing for single-cell spatial transcriptomics data

被引:0
|
作者
Yan, Yinqiao [1 ]
Luo, Xiangyu [2 ]
机构
[1] Beijing Univ Technol, Sch Math Stat & Mech, 100 Pingleyuan, Beijing 100124, Peoples R China
[2] Renmin Univ China, Inst Stat & Big Data, 59 Zhongguancun St, Beijing 100872, Peoples R China
基金
中国国家自然科学基金;
关键词
Bayesian inference; cell typing; spatial pattern; single-cell spatial transcriptomics; RESOLVED TRANSCRIPTOMICS;
D O I
10.1093/bib/bbae689
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
The spatial transcriptomics is a rapidly evolving biological technology that simultaneously measures the gene expression profiles and the spatial locations of spots. With progressive advances, current spatial transcriptomic techniques can achieve the cellular or even the subcellular resolution, making it possible to explore the fine-grained spatial pattern of cell types within one tissue section. However, most existing cell spatial clustering methods require a correct specification of the cell type number, which is hard to determine in the practical exploratory data analysis. To address this issue, we present a nonparametric Bayesian model BACT to perform BAyesian Cell Typing by utilizing gene expression information and spatial coordinates of cells. BACT incorporates a nonparametric Potts prior to induce neighboring cells' spatial dependency, and, more importantly, it can automatically learn the cell type number directly from the data without prespecification. Evaluations on three single-cell spatial transcriptomic datasets demonstrate the better performance of BACT than competing spatial cell typing methods. The R package and the user manual of BACT are publicly available at https://github.com/yinqiaoyan/BACT.
引用
收藏
页数:9
相关论文
共 50 条
  • [21] Benchmarking spatial and single-cell transcriptomics integration methods
    Lin, Jun
    Qu, Kun
    NATURE METHODS, 2022, 19 (06) : 656 - 657
  • [22] Profiling cell identity and tissue architecture with single-cell and spatial transcriptomics
    Gulati, Gunsagar S.
    D'Silva, Jeremy Philip
    Liu, Yunhe
    Wang, Linghua
    Newman, Aaron M.
    NATURE REVIEWS MOLECULAR CELL BIOLOGY, 2025, 26 (01) : 11 - 31
  • [23] Single-cell and spatial transcriptomics during human organogenesis
    Xu, Yichi
    Shi, Weiyang
    NATURE CELL BIOLOGY, 2023, 25 (04) : 522 - 523
  • [24] Single-cell and spatial transcriptomics during human organogenesis
    Nature Cell Biology, 2023, 25 : 522 - 523
  • [25] NONPARAMETRIC BAYESIAN MULTIARMED BANDITS FOR SINGLE-CELL EXPERIMENT DESIGN
    Camerlenghi, Federico
    Dumitrascu, Bianca
    Ferrari, Federico
    Engelhardt, Barbara E.
    Favaro, Stefano
    ANNALS OF APPLIED STATISTICS, 2020, 14 (04): : 2003 - 2019
  • [26] Leveraging spatial transcriptomics data to recover cell locations in single-cell RNA-seq with CeLEry
    Zhang, Qihuang
    Jiang, Shunzhou
    Schroeder, Amelia
    Hu, Jian
    Li, Kejie
    Zhang, Baohong
    Dai, David
    Lee, Edward B.
    Xiao, Rui
    Li, Mingyao
    NATURE COMMUNICATIONS, 2023, 14 (01)
  • [27] Leveraging spatial transcriptomics data to recover cell locations in single-cell RNA-seq with CeLEry
    Qihuang Zhang
    Shunzhou Jiang
    Amelia Schroeder
    Jian Hu
    Kejie Li
    Baohong Zhang
    David Dai
    Edward B. Lee
    Rui Xiao
    Mingyao Li
    Nature Communications, 14
  • [28] Single-cell spatial explorer: easy exploration of spatial and multimodal transcriptomics
    Frédéric Pont
    Juan Pablo Cerapio
    Pauline Gravelle
    Laetitia Ligat
    Carine Valle
    Emeline Sarot
    Marion Perrier
    Frédéric Lopez
    Camille Laurent
    Jean Jacques Fournié
    Marie Tosolini
    BMC Bioinformatics, 24
  • [29] Comprehensive visualization of cell-cell interactions in single-cell and spatial transcriptomics with NICHES
    Raredon, Micha Sam Brickman
    Yang, Junchen
    Kothapalli, Neeharika
    Lewis, Wesley
    Kaminski, Naftali
    Niklason, Laura E.
    Kluger, Yuval
    BIOINFORMATICS, 2023, 39 (01)
  • [30] Single-cell spatial explorer: easy exploration of spatial and multimodal transcriptomics
    Pont, Frederic
    Cerapio, Juan Pablo
    Gravelle, Pauline
    Ligat, Laetitia
    Valle, Carine
    Sarot, Emeline
    Perrier, Marion
    Lopez, Frederic
    Laurent, Camille
    Fournie, Jean Jacques
    Tosolini, Marie
    BMC BIOINFORMATICS, 2023, 24 (01)