STEM enables mapping of single-cell and spatial transcriptomics data with transfer learning

被引:0
|
作者
Minsheng Hao
Erpai Luo
Yixin Chen
Yanhong Wu
Chen Li
Sijie Chen
Haoxiang Gao
Haiyang Bian
Jin Gu
Lei Wei
Xuegong Zhang
机构
[1] Tsinghua University,MOE Key Laboratory of Bioinformatics and Bioinformatics Division, BNRIST, Department of Automation
[2] Tsinghua University,School of Life Sciences and School of Medicine, Center for Synthetic and Systems Biology
来源
关键词
D O I
暂无
中图分类号
学科分类号
摘要
Profiling spatial variations of cellular composition and transcriptomic characteristics is important for understanding the physiology and pathology of tissues. Spatial transcriptomics (ST) data depict spatial gene expression but the currently dominating high-throughput technology is yet not at single-cell resolution. Single-cell RNA-sequencing (SC) data provide high-throughput transcriptomic information at the single-cell level but lack spatial information. Integrating these two types of data would be ideal for revealing transcriptomic landscapes at single-cell resolution. We develop the method STEM (SpaTially aware EMbedding) for this purpose. It uses deep transfer learning to encode both ST and SC data into a unified spatially aware embedding space, and then uses the embeddings to infer SC-ST mapping and predict pseudo-spatial adjacency between cells in SC data. Semi-simulation and real data experiments verify that the embeddings preserved spatial information and eliminated technical biases between SC and ST data. We apply STEM to human squamous cell carcinoma and hepatic lobule datasets to uncover the localization of rare cell types and reveal cell-type-specific gene expression variation along a spatial axis. STEM is powerful for mapping SC and ST data to build single-cell level spatial transcriptomic landscapes, and can provide mechanistic insights into the spatial heterogeneity and microenvironments of tissues.
引用
收藏
相关论文
共 50 条
  • [1] STEM enables mapping of single-cell and spatial transcriptomics data with transfer learning
    Hao, Minsheng
    Luo, Erpai
    Chen, Yixin
    Wu, Yanhong
    Li, Chen
    Chen, Sijie
    Gao, Haoxiang
    Bian, Haiyang
    Gu, Jin
    Wei, Lei
    Zhang, Xuegong
    [J]. COMMUNICATIONS BIOLOGY, 2024, 7 (01)
  • [2] Data denoising with transfer learning in single-cell transcriptomics
    Wang, Jingshu
    Agarwal, Divyansh
    Huang, Mo
    Hu, Gang
    Zhou, Zilu
    Ye, Chengzhong
    Zhang, Nancy R.
    [J]. NATURE METHODS, 2019, 16 (09) : 875 - +
  • [3] Data denoising with transfer learning in single-cell transcriptomics
    Jingshu Wang
    Divyansh Agarwal
    Mo Huang
    Gang Hu
    Zilu Zhou
    Chengzhong Ye
    Nancy R. Zhang
    [J]. Nature Methods, 2019, 16 : 875 - 878
  • [4] Single-cell and spatial transcriptomics enables probabilistic inference of cell type topography
    Alma Andersson
    Joseph Bergenstråhle
    Michaela Asp
    Ludvig Bergenstråhle
    Aleksandra Jurek
    José Fernández Navarro
    Joakim Lundeberg
    [J]. Communications Biology, 3
  • [5] Single-cell and spatial transcriptomics enables probabilistic inference of cell type topography
    Andersson, Alma
    Bergenstrahle, Joseph
    Asp, Michaela
    Bergenstrahle, Ludvig
    Jurek, Aleksandra
    Fernandez Navarro, Jose
    Lundeberg, Joakim
    [J]. COMMUNICATIONS BIOLOGY, 2020, 3 (01)
  • [6] Single-cell spatial transcriptomics
    Christine Weber
    [J]. Nature Cell Biology, 2021, 23 : 1108 - 1108
  • [7] Single-cell spatial transcriptomics
    Weber, Christine
    [J]. NATURE CELL BIOLOGY, 2021, 23 (11) : 1108 - 1108
  • [8] Mapping single-cell data to reference atlases by transfer learning
    Mohammad Lotfollahi
    Mohsen Naghipourfar
    Malte D. Luecken
    Matin Khajavi
    Maren Büttner
    Marco Wagenstetter
    Žiga Avsec
    Adam Gayoso
    Nir Yosef
    Marta Interlandi
    Sergei Rybakov
    Alexander V. Misharin
    Fabian J. Theis
    [J]. Nature Biotechnology, 2022, 40 : 121 - 130
  • [9] Mapping single-cell data to reference atlases by transfer learning
    Lotfollahi, Mohammad
    Naghipourfar, Mohsen
    Luecken, Malte D.
    Khajavi, Matin
    Buettner, Maren
    Wagenstetter, Marco
    Avsec, Ziga
    Gayoso, Adam
    Yosef, Nir
    Interlandi, Marta
    Rybakov, Sergei
    Misharin, Alexander, V
    Theis, Fabian J.
    [J]. NATURE BIOTECHNOLOGY, 2022, 40 (01) : 121 - +
  • [10] Domain generalization enables general cancer cell annotation in single-cell and spatial transcriptomics
    Zhixing Zhong
    Junchen Hou
    Zhixian Yao
    Lei Dong
    Feng Liu
    Junqiu Yue
    Tiantian Wu
    Junhua Zheng
    Gaoliang Ouyang
    Chaoyong Yang
    Jia Song
    [J]. Nature Communications, 15