Data denoising with transfer learning in single-cell transcriptomics

被引:116
|
作者
Wang, Jingshu [1 ]
Agarwal, Divyansh [2 ]
Huang, Mo [1 ]
Hu, Gang [3 ]
Zhou, Zilu [2 ]
Ye, Chengzhong [4 ]
Zhang, Nancy R. [1 ]
机构
[1] Univ Penn, Dept Stat, Philadelphia, PA 19104 USA
[2] Univ Penn, Grad Grp Genom & Computat Biol, Philadelphia, PA 19104 USA
[3] Nankai Univ, Sch Math Sci, Tianjin, Peoples R China
[4] Tsinghua Univ, Sch Med, Beijing, Peoples R China
基金
美国国家科学基金会;
关键词
MOUSE;
D O I
10.1038/s41592-019-0537-1
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Single-cell RNA sequencing (scRNA-seq) data are noisy and sparse. Here, we show that transfer learning across datasets remarkably improves data quality. By coupling a deep autoencoder with a Bayesian model, SAVER-X extracts transferable gene-gene relationships across data from different labs, varying conditions and divergent species, to denoise new target datasets.
引用
收藏
页码:875 / +
页数:6
相关论文
共 50 条
  • [1] Data denoising with transfer learning in single-cell transcriptomics
    Jingshu Wang
    Divyansh Agarwal
    Mo Huang
    Gang Hu
    Zilu Zhou
    Chengzhong Ye
    Nancy R. Zhang
    [J]. Nature Methods, 2019, 16 : 875 - 878
  • [2] STEM enables mapping of single-cell and spatial transcriptomics data with transfer learning
    Hao, Minsheng
    Luo, Erpai
    Chen, Yixin
    Wu, Yanhong
    Li, Chen
    Chen, Sijie
    Gao, Haoxiang
    Bian, Haiyang
    Gu, Jin
    Wei, Lei
    Zhang, Xuegong
    [J]. COMMUNICATIONS BIOLOGY, 2024, 7 (01)
  • [3] STEM enables mapping of single-cell and spatial transcriptomics data with transfer learning
    Minsheng Hao
    Erpai Luo
    Yixin Chen
    Yanhong Wu
    Chen Li
    Sijie Chen
    Haoxiang Gao
    Haiyang Bian
    Jin Gu
    Lei Wei
    Xuegong Zhang
    [J]. Communications Biology, 7
  • [4] Online Single-cell RNA-seq Data Denoising with Transfer Learning
    Kang, Bowei
    Abeysinghe, Eroma
    Agarwal, Divyansh
    Wang, Quanli
    Pamidighantam, Sudhakar
    Huang, Mo
    Zhang, Nancy R.
    Wang, Jingshu
    [J]. PRACTICE AND EXPERIENCE IN ADVANCED RESEARCH COMPUTING 2020, PEARC 2020, 2020, : 469 - 472
  • [5] Deep learning applications in single-cell genomics and transcriptomics data analysis
    Erfanian, Nafiseh
    Heydari, A. Ali
    Feriz, Adib Miraki
    Ianez, Pablo
    Derakhshani, Afshin
    Ghasemigol, Mohammad
    Farahpour, Mohsen
    Razavi, Seyyed Mohammad
    Nasseri, Saeed
    Safarpour, Hossein
    Sahebkar, Amirhossein
    [J]. BIOMEDICINE & PHARMACOTHERAPY, 2023, 165
  • [6] Batch alignment of single-cell transcriptomics data using deep metric learning
    Yu, Xiaokang
    Xu, Xinyi
    Zhang, Jingxiao
    Li, Xiangjie
    [J]. NATURE COMMUNICATIONS, 2023, 14 (01)
  • [7] Batch alignment of single-cell transcriptomics data using deep metric learning
    Xiaokang Yu
    Xinyi Xu
    Jingxiao Zhang
    Xiangjie Li
    [J]. Nature Communications, 14
  • [8] Mapping single-cell data to reference atlases by transfer learning
    Mohammad Lotfollahi
    Mohsen Naghipourfar
    Malte D. Luecken
    Matin Khajavi
    Maren Büttner
    Marco Wagenstetter
    Žiga Avsec
    Adam Gayoso
    Nir Yosef
    Marta Interlandi
    Sergei Rybakov
    Alexander V. Misharin
    Fabian J. Theis
    [J]. Nature Biotechnology, 2022, 40 : 121 - 130
  • [9] Mapping single-cell data to reference atlases by transfer learning
    Lotfollahi, Mohammad
    Naghipourfar, Mohsen
    Luecken, Malte D.
    Khajavi, Matin
    Buettner, Maren
    Wagenstetter, Marco
    Avsec, Ziga
    Gayoso, Adam
    Yosef, Nir
    Interlandi, Marta
    Rybakov, Sergei
    Misharin, Alexander, V
    Theis, Fabian J.
    [J]. NATURE BIOTECHNOLOGY, 2022, 40 (01) : 121 - +
  • [10] A joint deep learning model enables simultaneous batch effect correction, denoising, and clustering in single-cell transcriptomics
    Lakkis, Justin
    Wang, David
    Zhang, Yuanchao
    Hu, Gang
    Wang, Kui
    Pan, Huize
    Ungar, Lyle
    Reilly, Muredach P.
    Li, Xiangjie
    Li, Mingyao
    [J]. GENOME RESEARCH, 2021, 31 (10) : 1753 - 1766