Data denoising with transfer learning in single-cell transcriptomics

被引:116
|
作者
Wang, Jingshu [1 ]
Agarwal, Divyansh [2 ]
Huang, Mo [1 ]
Hu, Gang [3 ]
Zhou, Zilu [2 ]
Ye, Chengzhong [4 ]
Zhang, Nancy R. [1 ]
机构
[1] Univ Penn, Dept Stat, Philadelphia, PA 19104 USA
[2] Univ Penn, Grad Grp Genom & Computat Biol, Philadelphia, PA 19104 USA
[3] Nankai Univ, Sch Math Sci, Tianjin, Peoples R China
[4] Tsinghua Univ, Sch Med, Beijing, Peoples R China
基金
美国国家科学基金会;
关键词
MOUSE;
D O I
10.1038/s41592-019-0537-1
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Single-cell RNA sequencing (scRNA-seq) data are noisy and sparse. Here, we show that transfer learning across datasets remarkably improves data quality. By coupling a deep autoencoder with a Bayesian model, SAVER-X extracts transferable gene-gene relationships across data from different labs, varying conditions and divergent species, to denoise new target datasets.
引用
收藏
页码:875 / +
页数:6
相关论文
共 50 条
  • [31] Manifold learning analysis suggests strategies to align single-cell multimodal data of neuronal electrophysiology and transcriptomics
    Jiawei Huang
    Jie Sheng
    Daifeng Wang
    [J]. Communications Biology, 4
  • [32] A hitchhiker's guide to single-cell transcriptomics and data analysis pipelines
    Nayak, Richa
    Hasija, Yasha
    [J]. GENOMICS, 2021, 113 (02) : 606 - 619
  • [33] Single-Cell Transcriptomics: Current Methods and Challenges in Data Acquisition and Analysis
    Adil, Asif
    Kumar, Vijay
    Jan, Arif Tasleem
    Asger, Mohammed
    [J]. FRONTIERS IN NEUROSCIENCE, 2021, 15
  • [34] Big data analytics in single-cell transcriptomics: Five grand opportunities
    Bhattacharya, Namrata
    Nelson, Colleen C.
    Ahuja, Gaurav
    Sengupta, Debarka
    [J]. WILEY INTERDISCIPLINARY REVIEWS-DATA MINING AND KNOWLEDGE DISCOVERY, 2021, 11 (04)
  • [35] Benchmarking data-driven filtering for denoising of TCRpMHC single-cell data
    Montemurro, Alessandro
    Povlsen, Helle Rus
    Jessen, Leon Eyrich
    Nielsen, Morten
    [J]. SCIENTIFIC REPORTS, 2023, 13 (01):
  • [36] Benchmarking data-driven filtering for denoising of TCRpMHC single-cell data
    Alessandro Montemurro
    Helle Rus Povlsen
    Leon Eyrich Jessen
    Morten Nielsen
    [J]. Scientific Reports, 13 (1)
  • [37] The Breast Single-Cell Atlas: Single-cell transcriptomics for personalised medicine.
    Viscido, Gaetano
    Gambardella, Gennaro
    Di Bernardo, Diego
    [J]. CANCER RESEARCH, 2021, 81 (13)
  • [38] Evaluation of machine learning approaches for cell-type identification from single-cell transcriptomics data (vol 2021)
    Huang, Yixuan
    Zhang, Peng
    [J]. BRIEFINGS IN BIOINFORMATICS, 2021, 22 (06)
  • [39] The Single-cell Pediatric Cancer Atlas: Open-source data and tools for single-cell transcriptomics of pediatric tumors
    Hawkins, Allegra G.
    Shapiro, Joshua A.
    Spielman, Stephanie J.
    Mejia, David S.
    Prasad, Deepashree Venkatesh
    Ichihara, Nozomi
    Yakovets, Arkadii
    Wheeler, Kurt G.
    Bethell, Chante J.
    Foltz, Steven M.
    O'Malley, Jennifer
    Greene, Casey S.
    Taroni, Jaclyn N.
    [J]. CANCER RESEARCH, 2024, 84 (06)
  • [40] A review of computational strategies for denoising and imputation of single-cell transcriptomic data
    Patruno, Lucrezia
    Maspero, Davide
    Craighero, Francesco
    Angaroni, Fabrizio
    Antoniotti, Marco
    Graudenzi, Alex
    [J]. BRIEFINGS IN BIOINFORMATICS, 2021, 22 (04)