Deterministic computation of quantiles in a Lipschitz framework

被引:0
|
作者
Gu, Yurun [1 ]
Rey, Clement [2 ]
机构
[1] Inst Polytech Paris, SAMOVAR, Telecom SudParis, F-91120 Palaiseau, France
[2] Inst Polytech Paris, Ecole Polytech, CMAP, Route Saclay, F-91120 Palaiseau, France
关键词
Quantile approximation; Adaptive algorithm; Lipschitz functions; Convergence; Optimality;
D O I
10.1016/j.cam.2024.116344
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this article, we focus on computing the quantiles of a random variable f (x) , where X is a [0, 1] (d)-valued random variable, d is an element of N*, and f : [0, 1](d)-> R is a deterministic Lipschitz function. We are particularly interested in scenarios where the cost of a single function evaluation is high, while the law of X is assumed to be known. In this context, we propose a deterministic algorithm to compute deterministic lower and upper bounds for the quantile of f(X) at a given level alpha is an element of (0, 1). With a fixed budget of N function calls, we demonstrate that our algorithm achieves an exponential deterministic convergence rate for d = 1 ( O (rho (N)) with alpha is an element of (0,1)) and a polynomial deterministic convergence rate for d >1(O(N- 1 /d-1 ) ) and show the optimality of those rates. Furthermore, we design two algorithms, depending on whether the Lipschitz constant of f is known or unknown.
引用
收藏
页数:16
相关论文
共 50 条
  • [41] Fast computation of Lipschitz constants on hyperrectangles using sparse codelists
    Darup, Moritz Schulze
    Moennigmann, Martin
    COMPUTERS & CHEMICAL ENGINEERING, 2018, 116 : 135 - 143
  • [42] A deterministic multiscale computation method for rough surface lubrication
    Pei, Shiyuan
    Xu, Hua
    Shi, Fanghui
    TRIBOLOGY INTERNATIONAL, 2016, 94 : 502 - 508
  • [43] Computation of Neutron Multiplicity Statistics using Deterministic Transport
    Mattingly, John
    2009 IEEE NUCLEAR SCIENCE SYMPOSIUM CONFERENCE RECORD, VOLS 1-5, 2009, : 1350 - 1355
  • [44] Deterministic quantum network for distributed entanglement and quantum computation
    Cohen, I
    Molmer, K.
    PHYSICAL REVIEW A, 2018, 98 (03)
  • [45] Deterministic photonic quantum computation in a synthetic time dimension
    Bartlett, Ben
    Dutt, Avik
    Fan, Shanhui
    OPTICA, 2021, 8 (12): : 1515 - 1523
  • [46] Variance reduction by means of deterministic computation: collision estimate
    Heinrich, S
    JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2000, 85 (1-2) : 159 - 169
  • [47] Computation of Neutron Multiplicity Statistics Using Deterministic Transport
    Mattingly, John
    IEEE TRANSACTIONS ON NUCLEAR SCIENCE, 2012, 59 (02) : 314 - 322
  • [49] OPTIMIZATION OF DIGITAL COMPUTATION IN CASE OF A DETERMINISTIC FLOW OF ORDERS
    BEZZUBOV, YI
    ENGINEERING CYBERNETICS, 1975, 13 (03): : 118 - 126
  • [50] Advances in probabilistic model checking with PRISM: variable reordering, quantiles and weak deterministic Buchi automata
    Klein, Joachim
    Baier, Christel
    Chrszon, Philipp
    Daum, Marcus
    Dubslaff, Clemens
    Kluppelholz, Sascha
    Maercker, Steffen
    Mueller, David
    INTERNATIONAL JOURNAL ON SOFTWARE TOOLS FOR TECHNOLOGY TRANSFER, 2018, 20 (02) : 179 - 194