Deterministic computation of quantiles in a Lipschitz framework

被引:0
|
作者
Gu, Yurun [1 ]
Rey, Clement [2 ]
机构
[1] Inst Polytech Paris, SAMOVAR, Telecom SudParis, F-91120 Palaiseau, France
[2] Inst Polytech Paris, Ecole Polytech, CMAP, Route Saclay, F-91120 Palaiseau, France
关键词
Quantile approximation; Adaptive algorithm; Lipschitz functions; Convergence; Optimality;
D O I
10.1016/j.cam.2024.116344
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this article, we focus on computing the quantiles of a random variable f (x) , where X is a [0, 1] (d)-valued random variable, d is an element of N*, and f : [0, 1](d)-> R is a deterministic Lipschitz function. We are particularly interested in scenarios where the cost of a single function evaluation is high, while the law of X is assumed to be known. In this context, we propose a deterministic algorithm to compute deterministic lower and upper bounds for the quantile of f(X) at a given level alpha is an element of (0, 1). With a fixed budget of N function calls, we demonstrate that our algorithm achieves an exponential deterministic convergence rate for d = 1 ( O (rho (N)) with alpha is an element of (0,1)) and a polynomial deterministic convergence rate for d >1(O(N- 1 /d-1 ) ) and show the optimality of those rates. Furthermore, we design two algorithms, depending on whether the Lipschitz constant of f is known or unknown.
引用
收藏
页数:16
相关论文
共 50 条
  • [31] Semantics of non-deterministic possibility computation
    Wu, Hengyang
    Chen, Yixiang
    FUZZY SETS AND SYSTEMS, 2012, 199 : 47 - 63
  • [32] Deterministic function computation with chemical reaction networks
    Chen, Ho-Lin
    Doty, David
    Soloveichik, David
    NATURAL COMPUTING, 2014, 13 (04) : 517 - 534
  • [33] Approximate Counting with Deterministic Guarantees for Affinity Computation
    Viricel, Clement
    Simoncini, David
    Allouche, David
    de Givry, Simon
    Barbe, Sophie
    Schiex, Thomas
    MODELLING, COMPUTATION AND OPTIMIZATION IN INFORMATION SYSTEMS AND MANAGEMENT SCIENCES - MCO 2015 - PT II, 2015, 360 : 165 - 176
  • [34] DetSF: A Deterministic Scheduling Framework
    Zhang, Wenzhe
    Lu, Kai
    Zhou, Xu
    2011 INTERNATIONAL CONFERENCE ON COMPUTER SCIENCE AND NETWORK TECHNOLOGY (ICCSNT), VOLS 1-4, 2012, : 195 - 199
  • [35] Deterministic Stochastic Computation Using Parallel Datapaths
    Groszewski, Alexander J.
    Lenz, Travis
    PROCEEDINGS OF THE 2019 20TH INTERNATIONAL SYMPOSIUM ON QUALITY ELECTRONIC DESIGN (ISQED), 2019, : 138 - 144
  • [37] On Deterministic Diagonal Methods for Solving Global Optimization Problems with Lipschitz Gradients
    Sergeyev, Yaroslav D.
    Kvasov, Dmitri E.
    OPTIMIZATION, CONTROL, AND APPLICATIONS IN THE INFORMATION AGE: IN HONOR OF PANOS M. PARDALOS'S 60TH BIRTHDAY, 2015, 130 : 315 - 334
  • [38] A Framework for Coded Computation
    Rachlin, Eric
    Savage, John E.
    2008 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY PROCEEDINGS, VOLS 1-6, 2008, : 2342 - 2346
  • [39] On the exact computation of the density and of the quantiles of linear combinations of t and F random variables
    Witkovsky, V
    JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2001, 94 (01) : 1 - 13
  • [40] A Disparity Computation Framework
    Vieira, Gabriel da Silva
    Soares, Fabrizzio Alphonsus A. M. N.
    de Lima, Junio Cesar
    do Nascimento, Hugo A. D.
    Laureano, Gustavo T.
    Costa, Ronaldo M.
    Ferreira, Julio C.
    Rodrigues, Wellington Galvao
    2019 IEEE 43RD ANNUAL COMPUTER SOFTWARE AND APPLICATIONS CONFERENCE (COMPSAC), VOL 2, 2019, : 634 - 639