Deterministic computation of quantiles in a Lipschitz framework

被引:0
|
作者
Gu, Yurun [1 ]
Rey, Clement [2 ]
机构
[1] Inst Polytech Paris, SAMOVAR, Telecom SudParis, F-91120 Palaiseau, France
[2] Inst Polytech Paris, Ecole Polytech, CMAP, Route Saclay, F-91120 Palaiseau, France
关键词
Quantile approximation; Adaptive algorithm; Lipschitz functions; Convergence; Optimality;
D O I
10.1016/j.cam.2024.116344
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this article, we focus on computing the quantiles of a random variable f (x) , where X is a [0, 1] (d)-valued random variable, d is an element of N*, and f : [0, 1](d)-> R is a deterministic Lipschitz function. We are particularly interested in scenarios where the cost of a single function evaluation is high, while the law of X is assumed to be known. In this context, we propose a deterministic algorithm to compute deterministic lower and upper bounds for the quantile of f(X) at a given level alpha is an element of (0, 1). With a fixed budget of N function calls, we demonstrate that our algorithm achieves an exponential deterministic convergence rate for d = 1 ( O (rho (N)) with alpha is an element of (0,1)) and a polynomial deterministic convergence rate for d >1(O(N- 1 /d-1 ) ) and show the optimality of those rates. Furthermore, we design two algorithms, depending on whether the Lipschitz constant of f is known or unknown.
引用
收藏
页数:16
相关论文
共 50 条
  • [21] Extreme geometric quantiles in a multivariate regular variation framework
    Stéphane Girard
    Gilles Stupfler
    Extremes, 2015, 18 : 629 - 663
  • [22] A framework of BSDEs with stochastic Lipschitz coefficients
    Hun, O.
    Kim, Mun-Chol
    Pak, Chol-Kyu
    ESAIM-PROBABILITY AND STATISTICS, 2020, 24 : 739 - 769
  • [23] Evolutionary computation of a deterministic switching regressions estimator
    Karavas, VN
    Moffitt, LJ
    COMPUTATIONAL STATISTICS, 2004, 19 (02) : 211 - 225
  • [24] Deterministic Computation of Pseudorandomness in Sequences of Cryptographic Application
    Fuster-Sabater, A.
    Caballero-Gil, P.
    Delgado-Mohatar, O.
    COMPUTATIONAL SCIENCE - ICCS 2009, PART I, 2009, 5544 : 621 - +
  • [25] Deterministic hybrid computation of rarefied gas flows
    Ohsawa, T
    Ohwada, T
    RAREFIED GAS DYNAMICS, 2003, 663 : 931 - 938
  • [26] Deterministic quantum computation with one photonic qubit
    Hor-Meyll, M.
    Tasca, D. S.
    Walborn, S. P.
    Souto Ribeiro, P. H.
    Santos, M. M.
    Duzzioni, E. I.
    PHYSICAL REVIEW A, 2015, 92 (01):
  • [27] Deterministic function computation with chemical reaction networks
    Ho-Lin Chen
    David Doty
    David Soloveichik
    Natural Computing, 2014, 13 : 517 - 534
  • [28] Expressivity of deterministic quantum computation with one qubit
    Kim, Yujin
    Park, Daniel K.
    PHYSICAL REVIEW A, 2025, 111 (02)
  • [29] Fast deterministic computation of determinants of dense matrices
    Abbott, J
    Bronstein, M
    Mulders, T
    ISSAC 99: PROCEEDINGS OF THE 1999 INTERNATIONAL SYMPOSIUM ON SYMBOLIC AND ALGEBRAIC COMPUTATION, 1999, : 197 - 204
  • [30] Evolutionary computation of a deterministic switching regressions estimator
    Vassilios N. Karavas
    L. Joe Moffitt
    Computational Statistics, 2004, 19 : 211 - 225