Deterministic computation of quantiles in a Lipschitz framework

被引:0
|
作者
Gu, Yurun [1 ]
Rey, Clement [2 ]
机构
[1] Inst Polytech Paris, SAMOVAR, Telecom SudParis, F-91120 Palaiseau, France
[2] Inst Polytech Paris, Ecole Polytech, CMAP, Route Saclay, F-91120 Palaiseau, France
关键词
Quantile approximation; Adaptive algorithm; Lipschitz functions; Convergence; Optimality;
D O I
10.1016/j.cam.2024.116344
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this article, we focus on computing the quantiles of a random variable f (x) , where X is a [0, 1] (d)-valued random variable, d is an element of N*, and f : [0, 1](d)-> R is a deterministic Lipschitz function. We are particularly interested in scenarios where the cost of a single function evaluation is high, while the law of X is assumed to be known. In this context, we propose a deterministic algorithm to compute deterministic lower and upper bounds for the quantile of f(X) at a given level alpha is an element of (0, 1). With a fixed budget of N function calls, we demonstrate that our algorithm achieves an exponential deterministic convergence rate for d = 1 ( O (rho (N)) with alpha is an element of (0,1)) and a polynomial deterministic convergence rate for d >1(O(N- 1 /d-1 ) ) and show the optimality of those rates. Furthermore, we design two algorithms, depending on whether the Lipschitz constant of f is known or unknown.
引用
收藏
页数:16
相关论文
共 50 条
  • [1] Efficient Computation of Quantiles over Joins
    Tziavelis, Nikolaos
    Carmeli, Nofar
    Gatterbauer, Wolfgang
    Kimelfeld, Benny
    Riedewald, Mirek
    PROCEEDINGS OF THE 42ND ACM SIGMOD-SIGACT-SIGAI SYMPOSIUM ON PRINCIPLES OF DATABASE SYSTEMS, PODS 2023, 2023, : 303 - 315
  • [2] Computation of Minimal Detectable Fault under Hybrid Stochastic and Deterministic Framework
    Tan, Junbo
    Zheng, Huailiang
    Wang, Xueqian
    Liang, Bin
    Yang, Wenming
    2022 AMERICAN CONTROL CONFERENCE, ACC, 2022, : 3620 - 3625
  • [3] Distributed Computation of Quantiles via ADMM
    Iutzeler, Franck
    IEEE SIGNAL PROCESSING LETTERS, 2017, 24 (05) : 619 - 623
  • [4] On computation of regression quantiles: Making the Laplacian Tortoise faster
    Portnoy, S
    L(1)-STATISTICAL PROCEDURES AND RELATED TOPICS, 1997, 31 : 187 - 200
  • [5] Effective computation of biased quantiles over data streams
    Cormode, G
    Korn, F
    Muthukrishnan, S
    Srivastava, D
    ICDE 2005: 21ST INTERNATIONAL CONFERENCE ON DATA ENGINEERING, PROCEEDINGS, 2005, : 20 - 31
  • [6] Deterministic computation of functional integrals
    Lobanov, YY
    COMPUTER PHYSICS COMMUNICATIONS, 1996, 99 (01) : 59 - 72
  • [7] Deterministic computation towards indeterminism
    Bogdanov, AV
    Gevorkyan, AS
    Stankova, EN
    Pavlova, MI
    COMPUTATIONAL SCIENCE-ICCS 2002, PT III, PROCEEDINGS, 2002, 2331 : 1176 - 1183
  • [8] A Deterministic Approach to Stochastic Computation
    Jenson, Devon
    Riedel, Marc
    2016 IEEE/ACM INTERNATIONAL CONFERENCE ON COMPUTER-AIDED DESIGN (ICCAD), 2016,
  • [9] Deterministic computation of the Frobenius form
    Storjohann, A
    42ND ANNUAL SYMPOSIUM ON FOUNDATIONS OF COMPUTER SCIENCE, PROCEEDINGS, 2001, : 368 - 377
  • [10] Deterministic computation of functional integrals
    Int Cent for Theoretical Physics, Trieste, Italy
    Comput Phys Commun, 1 (59-72):