Quantization dimensions for the bi-Lipschitz recurrent iterated function systems

被引:0
|
作者
Priyadarshi, Amit [1 ]
Roychowdhury, Mrinal K. [2 ]
Verma, Manuj [1 ]
机构
[1] Indian Inst Technol Delhi, Dept Math, New Delhi, India
[2] Univ Texas Rio Grande Valley, Sch Math & Stat Sci, Edinburg, TX USA
来源
DYNAMICAL SYSTEMS-AN INTERNATIONAL JOURNAL | 2025年 / 40卷 / 01期
关键词
Quantization dimension; Hausdorff dimension; box dimension; recurrent iterated function systems; probability measures; SELF-SIMILAR SETS; HAUSDORFF DIMENSION; TEMPERATURE FUNCTION;
D O I
10.1080/14689367.2024.2424226
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, the quantization dimensions of the Borel probability measures supported on the limit sets of the bi-Lipschitz recurrent iterated function systems under the strong open set condition in terms of the spectral radius have been estimated.
引用
收藏
页码:71 / 90
页数:20
相关论文
共 50 条
  • [21] On the extension of bi-Lipschitz mappings
    Lev Birbrair
    Alexandre Fernandes
    Zbigniew Jelonek
    Selecta Mathematica, 2021, 27
  • [22] BI-LIPSCHITZ INVARIANCE OF THE MULTIPLICITY
    Fernandes, Alexandre
    Sampaio, José Edson
    arXiv, 2022,
  • [23] Gap property of Bi-Lipschitz constants of Bi-Lipschitz automorphisms on self-similar sets
    Lifeng Xi
    Ying Xiong
    Chinese Annals of Mathematics, Series B, 2010, 31 : 211 - 218
  • [24] Gap Property of Bi-Lipschitz Constants of Bi-Lipschitz Automorphisms on Self-similar Sets
    Xi, Lifeng
    Xiong, Ying
    CHINESE ANNALS OF MATHEMATICS SERIES B, 2010, 31 (02) : 211 - 218
  • [25] On the extension of bi-Lipschitz mappings
    Birbrair, Lev
    Fernandes, Alexandre
    Jelonek, Zbigniew
    SELECTA MATHEMATICA-NEW SERIES, 2021, 27 (02):
  • [26] AN INVARIANT OF BI-LIPSCHITZ MAPS
    MOVAHEDILANKARANI, H
    FUNDAMENTA MATHEMATICAE, 1993, 143 (01) : 1 - 9
  • [27] Bi-Lipschitz parameterization of surfaces
    Bonk, M
    Lang, U
    MATHEMATISCHE ANNALEN, 2003, 327 (01) : 135 - 169
  • [28] Gap Property of Bi-Lipschitz Constants of Bi-Lipschitz Automorphisms on Self-similar Sets
    Lifeng XI Ying XIONG Institute of Mathematics
    Chinese Annals of Mathematics,Series B, 2010, (02) : 211 - 218
  • [29] Gap Property of Bi-Lipschitz Constants of Bi-Lipschitz Automorphisms on Self-similar Sets
    Lifeng XI Ying XIONG Institute of MathematicsZhejiang Wanli UniversityNingbo ZhejiangChina Department of MathematicsSouth China University of TechnologyGuangzhou China
    Chinese Annals of Mathematics, 2010, 31 (02) : 211 - 218
  • [30] On the piecewise approximation of bi-Lipschitz curves
    Pratelli, Aldo
    Radici, Emanuela
    RENDICONTI DEL SEMINARIO MATEMATICO DELLA UNIVERSITA DI PADOVA, 2017, 138 : 1 - 37