BI-LIPSCHITZ INVARIANCE OF THE MULTIPLICITY

被引:0
|
作者
Fernandes, Alexandre [1 ]
Sampaio, José Edson [2 ]
机构
[1] Departamento de Matemática, Universidade Federal do Ceará, Av. Humberto Monte, s/n Campus do Pici - Bloco 914, Fortaleza-CE,60455-760, Brazil
[2] Departamento de Matemática, Universidade Federal do Ceará, Rua Campus do Pici, s/n, Bloco 914, Pici, Fortaleza-CE,60440-900, Brazil
来源
arXiv | 2022年
关键词
Compilation and indexing terms; Copyright 2024 Elsevier Inc;
D O I
暂无
中图分类号
学科分类号
摘要
引用
收藏
相关论文
共 50 条
  • [1] Multiplicity of singularities is not a bi-Lipschitz invariant
    Birbrair, Lev
    Fernandes, Alexandre
    Edson Sampaio, J.
    Verbitsky, Misha
    MATHEMATISCHE ANNALEN, 2020, 377 (1-2) : 115 - 121
  • [2] Multiplicity of singularities is not a bi-Lipschitz invariant
    Lev Birbrair
    Alexandre Fernandes
    J. Edson Sampaio
    Misha Verbitsky
    Mathematische Annalen, 2020, 377 : 115 - 121
  • [3] ON BI-LIPSCHITZ INVARIANCE AND THE UNIQUENESS OF TANGENT CONES
    Sampaio, Joseedson
    Da Silva, Euripedes Carvalho
    JOURNAL OF SINGULARITIES, 2022, 25 : 393 - 402
  • [4] Multiplicity and degree as bi-Lipschitz invariants for complex sets
    Fernandez de Bobadilla, Javier
    Fernandes, Alexandre
    Edson Sampaio, J.
    JOURNAL OF TOPOLOGY, 2018, 11 (04) : 958 - 966
  • [5] BI-LIPSCHITZ CONCORDANCE IMPLIES BI-LIPSCHITZ ISOTOPY
    LUUKKAINEN, J
    MONATSHEFTE FUR MATHEMATIK, 1991, 111 (01): : 35 - 46
  • [6] Transitive Bi-Lipschitz Group Actions and Bi-Lipschitz Parameterizations
    Freeman, David M.
    INDIANA UNIVERSITY MATHEMATICS JOURNAL, 2013, 62 (01) : 311 - 331
  • [7] Multiplicity of analytic hypersurface singularities under bi-Lipschitz homeomorphisms
    Fernandes, A.
    Edson Sampaio, J.
    JOURNAL OF TOPOLOGY, 2016, 9 (03) : 927 - 933
  • [8] Invariance of regularity conditions under definable, locally Lipschitz, weakly bi-Lipschitz mappings
    Czapla, Malgorzata
    ANNALES POLONICI MATHEMATICI, 2010, 97 (01) : 1 - 21
  • [9] Qualitative Lipschitz to bi-Lipschitz decomposition
    Bate, David
    ANALYSIS AND GEOMETRY IN METRIC SPACES, 2024, 12 (01):
  • [10] Bi-Lipschitz homeomorphic subanalytic sets have bi-Lipschitz homeomorphic tangent cones
    J. Edson Sampaio
    Selecta Mathematica, 2016, 22 : 553 - 559