BI-LIPSCHITZ INVARIANCE OF THE MULTIPLICITY

被引:0
|
作者
Fernandes, Alexandre [1 ]
Sampaio, José Edson [2 ]
机构
[1] Departamento de Matemática, Universidade Federal do Ceará, Av. Humberto Monte, s/n Campus do Pici - Bloco 914, Fortaleza-CE,60455-760, Brazil
[2] Departamento de Matemática, Universidade Federal do Ceará, Rua Campus do Pici, s/n, Bloco 914, Pici, Fortaleza-CE,60440-900, Brazil
来源
arXiv | 2022年
关键词
Compilation and indexing terms; Copyright 2024 Elsevier Inc;
D O I
暂无
中图分类号
学科分类号
摘要
引用
收藏
相关论文
共 50 条
  • [21] On the extension of bi-Lipschitz mappings
    Birbrair, Lev
    Fernandes, Alexandre
    Jelonek, Zbigniew
    SELECTA MATHEMATICA-NEW SERIES, 2021, 27 (02):
  • [22] AN INVARIANT OF BI-LIPSCHITZ MAPS
    MOVAHEDILANKARANI, H
    FUNDAMENTA MATHEMATICAE, 1993, 143 (01) : 1 - 9
  • [23] Bi-Lipschitz parameterization of surfaces
    Bonk, M
    Lang, U
    MATHEMATISCHE ANNALEN, 2003, 327 (01) : 135 - 169
  • [24] Gap Property of Bi-Lipschitz Constants of Bi-Lipschitz Automorphisms on Self-similar Sets
    Lifeng XI Ying XIONG Institute of Mathematics
    Chinese Annals of Mathematics,Series B, 2010, (02) : 211 - 218
  • [25] Gap Property of Bi-Lipschitz Constants of Bi-Lipschitz Automorphisms on Self-similar Sets
    Lifeng XI Ying XIONG Institute of MathematicsZhejiang Wanli UniversityNingbo ZhejiangChina Department of MathematicsSouth China University of TechnologyGuangzhou China
    Chinese Annals of Mathematics, 2010, 31 (02) : 211 - 218
  • [26] On the piecewise approximation of bi-Lipschitz curves
    Pratelli, Aldo
    Radici, Emanuela
    RENDICONTI DEL SEMINARIO MATEMATICO DELLA UNIVERSITA DI PADOVA, 2017, 138 : 1 - 37
  • [27] Bi-Lipschitz decomposition of Lipschitz functions into a metric space
    Schul, Raanan
    REVISTA MATEMATICA IBEROAMERICANA, 2009, 25 (02) : 521 - 531
  • [28] Bi-Lipschitz geometry of quasiconformal trees
    David, Guy C.
    Vellis, Vyron
    ILLINOIS JOURNAL OF MATHEMATICS, 2022, 66 (02) : 189 - 244
  • [29] On the Bi-Lipschitz Geometry of Lamplighter Graphs
    F. Baudier
    P. Motakis
    Th. Schlumprecht
    A. Zsák
    Discrete & Computational Geometry, 2021, 66 : 203 - 235
  • [30] On the Bi-Lipschitz Geometry of Lamplighter Graphs
    Baudier, F.
    Motakis, P.
    Schlumprecht, Th.
    Zsak, A.
    DISCRETE & COMPUTATIONAL GEOMETRY, 2021, 66 (01) : 203 - 235