Quantization dimensions for the bi-Lipschitz recurrent iterated function systems

被引:0
|
作者
Priyadarshi, Amit [1 ]
Roychowdhury, Mrinal K. [2 ]
Verma, Manuj [1 ]
机构
[1] Indian Inst Technol Delhi, Dept Math, New Delhi, India
[2] Univ Texas Rio Grande Valley, Sch Math & Stat Sci, Edinburg, TX USA
来源
DYNAMICAL SYSTEMS-AN INTERNATIONAL JOURNAL | 2025年 / 40卷 / 01期
关键词
Quantization dimension; Hausdorff dimension; box dimension; recurrent iterated function systems; probability measures; SELF-SIMILAR SETS; HAUSDORFF DIMENSION; TEMPERATURE FUNCTION;
D O I
10.1080/14689367.2024.2424226
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, the quantization dimensions of the Borel probability measures supported on the limit sets of the bi-Lipschitz recurrent iterated function systems under the strong open set condition in terms of the spectral radius have been estimated.
引用
收藏
页码:71 / 90
页数:20
相关论文
共 50 条
  • [31] Bi-Lipschitz decomposition of Lipschitz functions into a metric space
    Schul, Raanan
    REVISTA MATEMATICA IBEROAMERICANA, 2009, 25 (02) : 521 - 531
  • [32] Bi-Lipschitz geometry of quasiconformal trees
    David, Guy C.
    Vellis, Vyron
    ILLINOIS JOURNAL OF MATHEMATICS, 2022, 66 (02) : 189 - 244
  • [33] On the Bi-Lipschitz Geometry of Lamplighter Graphs
    F. Baudier
    P. Motakis
    Th. Schlumprecht
    A. Zsák
    Discrete & Computational Geometry, 2021, 66 : 203 - 235
  • [34] On the Bi-Lipschitz Geometry of Lamplighter Graphs
    Baudier, F.
    Motakis, P.
    Schlumprecht, Th.
    Zsak, A.
    DISCRETE & COMPUTATIONAL GEOMETRY, 2021, 66 (01) : 203 - 235
  • [35] Bi-Lipschitz Characterization of Space Curves
    Fernandes, Alexandre
    Jelonek, Zbigniew
    BULLETIN OF THE BRAZILIAN MATHEMATICAL SOCIETY, 2023, 54 (03):
  • [36] Bi-Lipschitz parts of quasisymmetric mappings
    Azzam, Jonas
    REVISTA MATEMATICA IBEROAMERICANA, 2016, 32 (02) : 589 - 648
  • [37] A planar bi-Lipschitz extension theorem
    Daneri, Sara
    Pratelli, Aldo
    ADVANCES IN CALCULUS OF VARIATIONS, 2015, 8 (03) : 221 - 266
  • [38] Multiplicity of singularities is not a bi-Lipschitz invariant
    Birbrair, Lev
    Fernandes, Alexandre
    Edson Sampaio, J.
    Verbitsky, Misha
    MATHEMATISCHE ANNALEN, 2020, 377 (1-2) : 115 - 121
  • [39] BI-LIPSCHITZ EMBEDDING OF PROJECTIVE METRICS
    Kovalev, Leonid V.
    CONFORMAL GEOMETRY AND DYNAMICS, 2014, 18 : 110 - 118
  • [40] Multiplicity of singularities is not a bi-Lipschitz invariant
    Lev Birbrair
    Alexandre Fernandes
    J. Edson Sampaio
    Misha Verbitsky
    Mathematische Annalen, 2020, 377 : 115 - 121