New Forms of the Open Newton-Cotes-Type Inequalities for a Family of the Quantum Differentiable Convex Functions

被引:0
|
作者
Soontharanon, Jarunee [1 ,2 ]
Ali, Muhammad Aamir [3 ]
Rezapour, Shahram [4 ,5 ]
Toseef, Muhammad [3 ]
Sitthiwirattham, Thanin [2 ,6 ]
机构
[1] King Mongkuts Univ Technol North Bangkok, Fac Appl Sci, Dept Math, Bangkok 10800, Thailand
[2] King Mongkuts Univ Technol North Bangkok, Sci & Technol Res Inst, Res Grp Fract Calculus Theory & Applicat, Bangkok 10800, Thailand
[3] Nanjing Normal Univ, Sch Math Sci, Jiangsu Key Lab NSLSCS, Nanjing, Peoples R China
[4] Azarbaijan Shahid Madani Univ, Dept Math, Tabriz, Iran
[5] China Med Univ, China Med Univ Hosp, Dept Med Res, Taichung, Taiwan
[6] Suan Dusit Univ, Fac Sci & Technol, Math Dept, Bangkok 10300, Thailand
来源
关键词
Open Newton-Cotes Formulas; Convex Functions; q-; Calculus; Fractional inequalities; HERMITE-HADAMARD INEQUALITIES; REAL NUMBERS; MIDPOINT; MAPPINGS;
D O I
10.22130/scma.2024.2036770.1826
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The main objective of this paper is to establish some new inequalities related to the open Newton-Cotes formulas in the setting of q-calculus. We establish a quantum integral identity first and then prove the desired inequalities for q-differentiable convex functions. These inequalities are useful for determining error bounds for the open Newton-Cotes formulas in both classical and q-calculus. This work distinguishes itself from existing studies by employing quantum operators, leading to sharper and more precise error estimates. These results extend the applicability of Newton- Cotes methods to quantum calculus, offering a novel contribution to the numerical analysis of convex functions. Finally, we provide mathematical examples and computational analysis to validate the newly established inequalities.
引用
收藏
页数:16
相关论文
共 50 条
  • [41] Some Newton's Type Inequalities for Geometrically Relative Convex Functions
    Noor, Muhammad Aslam
    Noor, Khalida Inayat
    Awan, Muhammad Uzair
    MALAYSIAN JOURNAL OF MATHEMATICAL SCIENCES, 2015, 9 (03): : 491 - 502
  • [42] Fractional Simpson like type inequalities for differentiable s-convex functions
    Kamouche, N.
    Ghomrani, S.
    Meftah, B.
    JOURNAL OF APPLIED MATHEMATICS STATISTICS AND INFORMATICS, 2022, 18 (01) : 73 - 91
  • [43] Some Weighted Midpoint Type Inequalities For Differentiable log-Convex Functions
    Meftah, Badreddine
    Benchettah, Djaber Chemseddine
    Lakhdari, Abdelghani
    Merad, Meriem
    BOLETIM SOCIEDADE PARANAENSE DE MATEMATICA, 2025, 43
  • [44] Milne-type inequalities for third differentiable and h-convex functions
    Benaissa, Bouharket
    Budak, Huseyin
    BOUNDARY VALUE PROBLEMS, 2025, 2025 (01):
  • [45] SOME HERMITE-HADAMARD TYPE INEQUALITIES FOR DIFFERENTIABLE CONVEX FUNCTIONS AND APPLICATIONS
    Xi, Bo-Yan
    Qi, Feng
    HACETTEPE JOURNAL OF MATHEMATICS AND STATISTICS, 2013, 42 (03): : 243 - 257
  • [46] FRACTIONAL SIMPSON LIKE TYPE INEQUALITIES FOR DIFFERENTIABLE s-CONVEX FUNCTIONS
    Bouhadjar, S.
    Meftah, B.
    JORDAN JOURNAL OF MATHEMATICS AND STATISTICS, 2023, 16 (03): : 563 - 584
  • [47] FRACTIONAL SIMPSON LIKE TYPE INEQUALITIES FOR DIFFERENTIABLE s-CONVEX FUNCTIONS
    Bouhadjar, S.
    Meftah, B.
    JORDAN JOURNAL OF MATHEMATICS AND STATISTICS, 2022, 16 (03): : 563 - 584
  • [48] Simpson's Second Type Integral Inequalities for Twice Differentiable Convex Functions
    Iftikhar, Sabah
    Uche, Ugochukwu David
    THAI JOURNAL OF MATHEMATICS, 2021, 19 (03): : 766 - 783
  • [49] SIMPSON TYPE QUANTUM INTEGRAL INEQUALITIES FOR CONVEX FUNCTIONS
    Tunc, M.
    Gov, E.
    Balgecti, S.
    MISKOLC MATHEMATICAL NOTES, 2018, 19 (01) : 649 - 664
  • [50] FRACTIONAL MULTIPLICATIVE OSTROWSKI-TYPE INEQUALITIES FOR MULTIPLICATIVE DIFFERENTIABLE CONVEX FUNCTIONS
    Meftah, Badreddine
    Boulares, Hamid
    Khan, Aziz
    Abdeljawad, Thabet
    JORDAN JOURNAL OF MATHEMATICS AND STATISTICS, 2024, 17 (01): : 113 - 128