New Forms of the Open Newton-Cotes-Type Inequalities for a Family of the Quantum Differentiable Convex Functions

被引:0
|
作者
Soontharanon, Jarunee [1 ,2 ]
Ali, Muhammad Aamir [3 ]
Rezapour, Shahram [4 ,5 ]
Toseef, Muhammad [3 ]
Sitthiwirattham, Thanin [2 ,6 ]
机构
[1] King Mongkuts Univ Technol North Bangkok, Fac Appl Sci, Dept Math, Bangkok 10800, Thailand
[2] King Mongkuts Univ Technol North Bangkok, Sci & Technol Res Inst, Res Grp Fract Calculus Theory & Applicat, Bangkok 10800, Thailand
[3] Nanjing Normal Univ, Sch Math Sci, Jiangsu Key Lab NSLSCS, Nanjing, Peoples R China
[4] Azarbaijan Shahid Madani Univ, Dept Math, Tabriz, Iran
[5] China Med Univ, China Med Univ Hosp, Dept Med Res, Taichung, Taiwan
[6] Suan Dusit Univ, Fac Sci & Technol, Math Dept, Bangkok 10300, Thailand
来源
关键词
Open Newton-Cotes Formulas; Convex Functions; q-; Calculus; Fractional inequalities; HERMITE-HADAMARD INEQUALITIES; REAL NUMBERS; MIDPOINT; MAPPINGS;
D O I
10.22130/scma.2024.2036770.1826
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The main objective of this paper is to establish some new inequalities related to the open Newton-Cotes formulas in the setting of q-calculus. We establish a quantum integral identity first and then prove the desired inequalities for q-differentiable convex functions. These inequalities are useful for determining error bounds for the open Newton-Cotes formulas in both classical and q-calculus. This work distinguishes itself from existing studies by employing quantum operators, leading to sharper and more precise error estimates. These results extend the applicability of Newton- Cotes methods to quantum calculus, offering a novel contribution to the numerical analysis of convex functions. Finally, we provide mathematical examples and computational analysis to validate the newly established inequalities.
引用
收藏
页数:16
相关论文
共 50 条
  • [21] Simpson and Newton type inequalities for convex functions via newly defined quantum integrals
    Budak, Huseyin
    Erden, Samet
    Ali, Muhammad Aamir
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2021, 44 (01) : 378 - 390
  • [22] Some New Generalized Fractional Newton's Type Inequalities for Convex Functions
    Soontharanon, Jarunee
    Ali, Muhammad Aamir
    Budak, Hueseyin
    Koesem, Pinar
    Nonlaopon, Kamsing
    Sitthiwirattham, Thanin
    JOURNAL OF FUNCTION SPACES, 2022, 2022
  • [23] On some Newton's type inequalities for differentiable convex functions via Riemann-Liouville fractional integrals
    Ali, Muhammad Aamir
    Budak, Huseyin
    Feckan, Michal
    Patanarapeelert, Nichaphat
    Sitthiwirattham, Thanin
    FILOMAT, 2023, 37 (11) : 3427 - 3441
  • [24] New Inequalities of Simpson's type for differentiable functions via generalized convex function
    Farooq, Shan E.
    Shabir, Khurram
    Qaisar, Shahid
    Ahmad, Farooq
    Almatroud, O. A.
    COMPTES RENDUS MATHEMATIQUE, 2021, 359 (02) : 137 - 147
  • [25] Some New Newton's Type Integral Inequalities for Co-Ordinated Convex Functions in Quantum Calculus
    Vivas-Cortez, Miguel
    Aamir Ali, Muhammad
    Kashuri, Artion
    Bashir Sial, Ifra
    Zhang, Zhiyue
    SYMMETRY-BASEL, 2020, 12 (09):
  • [26] On Some New Trapezoidal Type Inequalities for Twice (p, q) Differentiable Convex Functions in Post-Quantum Calculus
    Sitthiwirattham, Thanin
    Murtaza, Ghulam
    Ali, Muhammad Aamir
    Ntouyas, Sotiris K.
    Adeel, Muhammad
    Soontharanon, Jarunee
    SYMMETRY-BASEL, 2021, 13 (09):
  • [27] New Fractional Integral Inequalities for Differentiable Convex Functions and Their Applications
    K.-L. Tseng
    K.-C. Hsu
    Ukrainian Mathematical Journal, 2017, 69 : 478 - 499
  • [28] NEW TRAPEZOID TYPE INEQUALITIES FOR DIFFERENTIABLE FUNCTIONS
    Yavuz, Melike
    Budak, Huseyin
    Bas, Umut
    FACTA UNIVERSITATIS-SERIES MATHEMATICS AND INFORMATICS, 2023, 38 (02): : 345 - 360
  • [29] PERTURBED FRACTIONAL NEWTON-TYPE INEQUALITIES BY TWICE DIFFERENTIABLE FUNCTIONS
    Hezenci, Fatih
    Kara, Hasan
    Budak, Huseyin
    HONAM MATHEMATICAL JOURNAL, 2023, 45 (02): : 285 - 299
  • [30] NEW WEIGHTED INTEGRAL INEQUALITIES FOR TWICE DIFFERENTIABLE CONVEX FUNCTIONS
    Sarikaya, M. Z.
    Erden, S.
    KRAGUJEVAC JOURNAL OF MATHEMATICS, 2016, 40 (01): : 15 - 33