Lie Symmetries and Solutions for a Reaction-Diffusion-Advection SIS Model with Demographic Effects

被引:0
|
作者
Naz, Rehana [1 ]
Torrisi, Mariano [2 ]
Imran, Ayesha [3 ]
机构
[1] Lahore Sch Econ, Dept Math & Stat Sci, Lahore 53200, Pakistan
[2] Univ Catania, Dipartimento Matemat & Informat, Viale Andrea Doria 6, I-95125 Catania, Italy
[3] Lahore Grammar Sch, Def, 483-4 G Block,Phase 5, Lahore 54810, Pakistan
来源
SYMMETRY-BASEL | 2025年 / 17卷 / 01期
关键词
susceptible-infectious-susceptible epidemic; Lie symmetry methods; advection rate; sensitivity analysis; diffusion coefficient; EPIDEMIC MODEL; CONSERVATION-LAWS; SYMBOLIC SOFTWARE; PACKAGE;
D O I
10.3390/sym17010003
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
A reaction-diffusion susceptible-infectious-susceptible disease model with advection, vital dynamics (birth-death effects), and a standard incidence infection mechanism is carefully analyzed. Two distinct diffusion coefficients for the susceptible and infected populations are considered. The Lie symmetries and closed-form solutions for the RDA-SIS disease model are established. The derived solution allows to study dynamics of disease transmission. Our simulation clearly illustrates the evolution dynamics of the model by using the values of parameters from academic sources. A sensitivity analysis is performed, offering valuable perspectives that could inform future disease management policies.
引用
收藏
页数:15
相关论文
共 50 条
  • [41] Contrast structures in the reaction-diffusion-advection equations in the case of balanced advection
    Levashova, N. T.
    Nefedov, N. N.
    Yagremtsev, A. V.
    COMPUTATIONAL MATHEMATICS AND MATHEMATICAL PHYSICS, 2013, 53 (03) : 273 - 283
  • [42] Contrast structures in the reaction-diffusion-advection equations in the case of balanced advection
    N. T. Levashova
    N. N. Nefedov
    A. V. Yagremtsev
    Computational Mathematics and Mathematical Physics, 2013, 53 : 273 - 283
  • [43] Error propagation in approximations to reaction-diffusion-advection equations
    Yannacopoulos, A.N.
    Tomlin, A.S.
    Brindley, J.
    Merkin, J.H.
    Pilling, M.J.
    Physics Letters, Section A: General, Atomic and Solid State Physics, 1996, 223 (1-2): : 82 - 90
  • [44] FRONT PROPAGATION IN BISTABLE REACTION-DIFFUSION-ADVECTION EQUATIONS
    Malaguti, Luisa
    Marcelli, Cristina
    Matucci, Serena
    ADVANCES IN DIFFERENTIAL EQUATIONS, 2004, 9 (9-10) : 1143 - 1166
  • [45] Lie Symmetries and Solutions of Reaction Diffusion Systems Arising in Biomathematics
    Torrisi, Mariano
    Tracina, Rita
    SYMMETRY-BASEL, 2021, 13 (08):
  • [46] Pushed fronts of monostable reaction-diffusion-advection equations
    Guo, Hongjun
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2023, 356 : 127 - 162
  • [47] Dynamical behavior of a general reaction-diffusion-advection model for two competing species
    Tang, De
    Ma, Li
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2018, 75 (04) : 1128 - 1142
  • [48] Dynamics and pattern formation in a reaction-diffusion-advection mussel-algae model
    Wang, Jinfeng
    Tong, Xue
    Song, Yongli
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2022, 73 (03):
  • [49] CONCENTRATION PHENOMENON OF THE ENDEMIC EQUILIBRIUM OF A REACTION-DIFFUSION-ADVECTION
    Lei, Chengxia
    Zhou, Xinhui
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2022, 27 (06): : 3077 - 3100
  • [50] Asymptotics of the front motion in the reaction-diffusion-advection problem
    E. A. Antipov
    N. T. Levashova
    N. N. Nefedov
    Computational Mathematics and Mathematical Physics, 2014, 54 : 1536 - 1549