Contrast structures in the reaction-diffusion-advection equations in the case of balanced advection

被引:0
|
作者
N. T. Levashova
N. N. Nefedov
A. V. Yagremtsev
机构
[1] Moscow State University,Department of Physics
关键词
singularly perturbed parabolic problems; reaction-diffusion equations; internal layers; asymptotic methods; method of differential inequalities; Lyapunov stability;
D O I
暂无
中图分类号
学科分类号
摘要
For a singularly perturbed parabolic equation termed in applications as the reaction-diffusion-advection equation, stationary solutions with internal transition layers (contrast structures) are studied. An arbitrary-order asymptotic approximation of such solutions is constructed, and an existence theorem is proved. An efficient algorithm for constructing an asymptotic approximation of the transition point is proposed. The constructed asymptotic approximation is justified by applying the asymptotic method of differential inequalities, which is extended to the class of problems under study. This method is also used to establish the Lyapunov stability of such stationary solutions.
引用
收藏
页码:273 / 283
页数:10
相关论文
共 50 条