Lie Symmetries and Solutions for a Reaction-Diffusion-Advection SIS Model with Demographic Effects

被引:0
|
作者
Naz, Rehana [1 ]
Torrisi, Mariano [2 ]
Imran, Ayesha [3 ]
机构
[1] Lahore Sch Econ, Dept Math & Stat Sci, Lahore 53200, Pakistan
[2] Univ Catania, Dipartimento Matemat & Informat, Viale Andrea Doria 6, I-95125 Catania, Italy
[3] Lahore Grammar Sch, Def, 483-4 G Block,Phase 5, Lahore 54810, Pakistan
来源
SYMMETRY-BASEL | 2025年 / 17卷 / 01期
关键词
susceptible-infectious-susceptible epidemic; Lie symmetry methods; advection rate; sensitivity analysis; diffusion coefficient; EPIDEMIC MODEL; CONSERVATION-LAWS; SYMBOLIC SOFTWARE; PACKAGE;
D O I
10.3390/sym17010003
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
A reaction-diffusion susceptible-infectious-susceptible disease model with advection, vital dynamics (birth-death effects), and a standard incidence infection mechanism is carefully analyzed. Two distinct diffusion coefficients for the susceptible and infected populations are considered. The Lie symmetries and closed-form solutions for the RDA-SIS disease model are established. The derived solution allows to study dynamics of disease transmission. Our simulation clearly illustrates the evolution dynamics of the model by using the values of parameters from academic sources. A sensitivity analysis is performed, offering valuable perspectives that could inform future disease management policies.
引用
收藏
页数:15
相关论文
共 50 条
  • [21] DYNAMICS OF A REACTION-DIFFUSION-ADVECTION MODEL FOR TWO COMPETING SPECIES
    Chen, Xinfu
    Lam, King-Yeung
    Lou, Yuan
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2012, 32 (11) : 3841 - 3859
  • [22] Symmetries and Conservation Laws for a Class of Fourth-Order Reaction-Diffusion-Advection Equations
    Torrisi, Mariano
    Tracina, Rita
    SYMMETRY-BASEL, 2023, 15 (10):
  • [23] Dynamics for a reaction-diffusion-advection mutualist model with different free boundaries
    Chen, Qiaoling
    Teng, Zhidong
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2023, 46 (05) : 4965 - 4984
  • [24] A nonlocal and periodic reaction-diffusion-advection model of a single phytoplankton species
    Rui Peng
    Xiao-Qiang Zhao
    Journal of Mathematical Biology, 2016, 72 : 755 - 791
  • [25] A Numerical Study of Traveling Wave Fronts for a Reaction-Diffusion-Advection Model
    M. B. A. Mansour
    Acta Applicandae Mathematicae, 2010, 109 : 939 - 947
  • [26] Competitive exclusion in a nonlocal reaction-diffusion-advection model of phytoplankton populations
    Jiang, Danhua
    Lam, King-Yeung
    Lou, Yuan
    NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2021, 61
  • [27] Dynamics and pattern formation in a reaction-diffusion-advection mussel–algae model
    Jinfeng Wang
    Xue Tong
    Yongli Song
    Zeitschrift für angewandte Mathematik und Physik, 2022, 73
  • [28] Stability and bifurcation of a reaction-diffusion-advection model with nonlinear boundary condition
    Li, Zhenzhen
    Dai, Binxiang
    Zou, Xingfu
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2023, 363 : 1 - 66
  • [29] A nonlocal and periodic reaction-diffusion-advection model of a single phytoplankton species
    Peng, Rui
    Zhao, Xiao-Qiang
    JOURNAL OF MATHEMATICAL BIOLOGY, 2016, 72 (03) : 755 - 791
  • [30] Convective instability and boundary driven oscillations in a reaction-diffusion-advection model
    Vidal-Henriquez, Estefania
    Zykov, Vladimir
    Bodenschatz, Eberhard
    Gholami, Azam
    CHAOS, 2017, 27 (10)