Integrating Spatially-Resolved Transcriptomics Data Across Tissues and Individuals: Challenges and Opportunities

被引:0
|
作者
Guo, Boyi [1 ]
Ling, Wodan [2 ]
Kwon, Sang Ho [3 ,4 ,5 ]
Panwar, Pratibha [6 ,7 ,8 ]
Ghazanfar, Shila [6 ,7 ,8 ]
Martinowich, Keri [3 ,4 ,9 ,10 ,11 ]
Hicks, Stephanie C. [1 ,12 ,13 ]
机构
[1] Johns Hopkins Bloomberg Sch Publ Hlth, Dept Biostat, Baltimore, MD 21205 USA
[2] Weill Cornell Med, Dept Populat Hlth Sci, Div Biostat, New York, NY 10065 USA
[3] Lieber Inst Brain Dev, Johns Hopkins Med Campus, Baltimore, MD 21205 USA
[4] Johns Hopkins Sch Med, Solomon H Snyder Dept Neurosci, Baltimore, MD 21205 USA
[5] Johns Hopkins Univ, Sch Med, Baltimore, MD 21205 USA
[6] Univ Sydney, Sch Math & Stat, Camperdown, NSW 2006, Australia
[7] Univ Sydney, Sydney Precis Data Sci Ctr, Camperdown, NSW 2006, Australia
[8] Univ Sydney, Charles Perkins Ctr, Camperdown, NSW 2006, Australia
[9] Johns Hopkins Sch Med, Dept Psychiat & Behav Sci, Baltimore, MD 21205 USA
[10] Johns Hopkins Univ, Johns Hopkins Kavli Neurosci Discovery Inst, Baltimore, MD 21218 USA
[11] Johns Hopkins Univ, Dept Biomed Engn, Baltimore, MD 21218 USA
[12] Johns Hopkins Univ, Ctr Computat Biol, Baltimore, MD 21218 USA
[13] Johns Hopkins Univ, Malone Ctr Engn Healthcare, Baltimore, MD 21218 USA
来源
SMALL METHODS | 2025年
基金
澳大利亚研究理事会;
关键词
integrative analysis; multi-sample; population-level; spatial alignment; spatial registration; spatially-resolved transcriptomics; RNA-SEQ DATA; HUMAN CELL ATLAS; SINGLE-CELL; GENE-EXPRESSION; NORMALIZATION; VISUALIZATION; BIOLOGY; IMPACT;
D O I
10.1002/smtd.202401194
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Advances in spatially-resolved transcriptomics (SRT) technologies have propelled the development of new computational analysis methods to unlock biological insights. The lowering cost of SRT data generation presents an unprecedented opportunity to create large-scale spatial atlases and enable population-level investigation, integrating SRT data across multiple tissues, individuals, species, or phenotypes. Here, unique challenges are described in the SRT data integration, where the analytic impact of varying spatial and biological resolutions is characterized and explored. A succinct review of spatially-aware integration methods and computational strategies is provided. Exciting opportunities to advance computational algorithms amenable to atlas-scale datasets along with standardized preprocessing methods, leading to improved sensitivity and reproducibility in the future are further highlighted.
引用
收藏
页数:13
相关论文
共 50 条
  • [31] Benchmarking cell -type clustering methods for spatially resolved transcriptomics data
    Cheng, Andrew
    Hu, Guanyu
    Li, Wei Vivian
    BRIEFINGS IN BIOINFORMATICS, 2023, 24 (01)
  • [32] A comparative performance evaluation of imputation methods in spatially resolved transcriptomics data
    Avsar, Gulben
    Pir, Pinar
    MOLECULAR OMICS, 2023, 19 (02) : 162 - 173
  • [33] Statistical and machine learning methods for spatially resolved transcriptomics data analysis
    Zexian Zeng
    Yawei Li
    Yiming Li
    Yuan Luo
    Genome Biology, 23
  • [34] Statistical and machine learning methods for spatially resolved transcriptomics data analysis
    Zeng, Zexian
    Li, Yawei
    Li, Yiming
    Luo, Yuan
    GENOME BIOLOGY, 2022, 23 (01)
  • [35] Spatially-resolved transcriptomics reveal macrophage heterogeneity and prognostic significance in diffuse large B-cell lymphoma
    Liu, Min
    Bertolazzi, Giorgio
    Sridhar, Shruti
    Lee, Rui Xue
    Jaynes, Patrick
    Mulder, Kevin
    Syn, Nicholas
    Hoppe, Michal Marek
    Fan, Shuangyi
    Peng, Yanfen
    Thng, Jocelyn
    Chua, Reiya
    Batumalai, Yogeshini
    De Mel, Sanjay
    Poon, Limei
    Chan, Esther Hian Li
    Lee, Joanne
    Hue, Susan Swee-Shan
    Chang, Sheng-Tsung
    Chuang, Shih-Sung
    Chandy, K. George
    Ye, Xiaofei
    Pan-Hammarstrom, Qiang
    Ginhoux, Florent
    Chee, Yen Lin
    Ng, Siok-Bian
    Tripodo, Claudio
    Jeyasekharan, Anand D.
    NATURE COMMUNICATIONS, 2024, 15 (01)
  • [36] Spatially-resolved transcriptomics reveal macrophage heterogeneity and prognostic significance in diffuse large B-cell lymphoma
    Min Liu
    Giorgio Bertolazzi
    Shruti Sridhar
    Rui Xue Lee
    Patrick Jaynes
    Kevin Mulder
    Nicholas Syn
    Michal Marek Hoppe
    Shuangyi Fan
    Yanfen Peng
    Jocelyn Thng
    Reiya Chua
    Yogeshini Jayalakshmi
    Sanjay Batumalai
    Limei De Mel
    Esther Hian Li Poon
    Joanne Chan
    Susan Swee-Shan Lee
    Sheng-Tsung Hue
    Shih-Sung Chang
    K. George Chuang
    Xiaofei Chandy
    Qiang Ye
    Florent Pan-Hammarström
    Yen Lin Ginhoux
    Siok-Bian Chee
    Claudio Ng
    Anand D. Tripodo
    Nature Communications, 15
  • [37] Challenges and opportunities in integrating ecological knowledge across scales
    Hobbs, NT
    FOREST ECOLOGY AND MANAGEMENT, 2003, 181 (1-2) : 223 - 238
  • [38] BayeSMART: Bayesian clustering of multi-sample spatially resolved transcriptomics data
    Guo, Yanghong
    Zhu, Bencong
    Tang, Chen
    Rong, Ruichen
    Ma, Ying
    Xiao, Guanghua
    Xu, Lin
    Li, Qiwei
    BRIEFINGS IN BIOINFORMATICS, 2024, 25 (06)
  • [39] spatiAlign: an unsupervised contrastive learning model for data integration of spatially resolved transcriptomics
    Zhang, Chao
    Liu, Lin
    Zhang, Ying
    Li, Mei
    Fang, Shuangsang
    Kang, Qiang
    Chen, Ao
    Xu, Xun
    Zhang, Yong
    Li, Yuxiang
    GIGASCIENCE, 2024, 13
  • [40] Categorization of 34 computational methods to detect spatially variable genes from spatially resolved transcriptomics data
    Yan, Guanao
    Hua, Shuo Harper
    Li, Jingyi Jessica
    NATURE COMMUNICATIONS, 2025, 16 (01)