Statistical and machine learning methods for spatially resolved transcriptomics data analysis

被引:71
|
作者
Zeng, Zexian [1 ,2 ,3 ]
Li, Yawei [4 ]
Li, Yiming [4 ]
Luo, Yuan [4 ,5 ,6 ,7 ]
机构
[1] Peking Univ, Acad Adv Interdisciplinary Studies, Ctr Quantitat Biol, Beijing 100084, Peoples R China
[2] Peking Univ, Acad Adv Interdisciplinary Studies, Peking Tsinghua Ctr Life Sci, Beijing 100084, Peoples R China
[3] Harvard TH Chan Sch Publ Hlth, Dana Farber Canc Inst, Dept Data Sci, Boston, MA 02215 USA
[4] Northwestern Univ, Dept Prevent Med, Div Hlth & Biomed Informat, Feinberg Sch Med, Chicago, IL 60611 USA
[5] Northwestern Univ, Clin & Translat Sci Inst, Chicago, IL 60611 USA
[6] Northwestern Univ, Inst Augmented Intelligence Med, Chicago, IL 60611 USA
[7] Northwestern Univ, Ctr Hlth Informat Partnerships, Chicago, IL 60611 USA
基金
美国国家卫生研究院;
关键词
GENE-EXPRESSION; CELL; RNA; TISSUE; REVEALS; SEQ; IDENTIFICATION; CHROMATIN; ATLAS;
D O I
10.1186/s13059-022-02653-7
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
The recent advancement in spatial transcriptomics technology has enabled multiplexed profiling of cellular transcriptomes and spatial locations. As the capacity and efficiency of the experimental technologies continue to improve, there is an emerging need for the development of analytical approaches. Furthermore, with the continuous evolution of sequencing protocols, the underlying assumptions of current analytical methods need to be re-evaluated and adjusted to harness the increasing data complexity. To motivate and aid future model development, we herein review the recent development of statistical and machine learning methods in spatial transcriptomics, summarize useful resources, and highlight the challenges and opportunities ahead.
引用
收藏
页数:23
相关论文
共 50 条
  • [1] Statistical and machine learning methods for spatially resolved transcriptomics data analysis
    Zexian Zeng
    Yawei Li
    Yiming Li
    Yuan Luo
    [J]. Genome Biology, 23
  • [2] Statistical and machine learning methods for spatially resolved transcriptomics with histology
    Hu, Jian
    Schroeder, Amelia
    Coleman, Kyle
    Chen, Chixiang
    Auerbach, Benjamin J.
    Li, Mingyao
    [J]. COMPUTATIONAL AND STRUCTURAL BIOTECHNOLOGY JOURNAL, 2021, 19 : 3829 - 3841
  • [3] Benchmarking spatial clustering methods with spatially resolved transcriptomics data
    Zhiyuan Yuan
    Fangyuan Zhao
    Senlin Lin
    Yu Zhao
    Jianhua Yao
    Yan Cui
    Xiao-Yong Zhang
    Yi Zhao
    [J]. Nature Methods, 2024, 21 : 712 - 722
  • [4] Computational methods for alignment and integration of spatially resolved transcriptomics data
    Liu, Yuyao
    Yang, Can
    [J]. COMPUTATIONAL AND STRUCTURAL BIOTECHNOLOGY JOURNAL, 2024, 23 : 1094 - 1105
  • [5] Benchmarking spatial clustering methods with spatially resolved transcriptomics data
    Yuan, Zhiyuan
    Zhao, Fangyuan
    Lin, Senlin
    Zhao, Yu
    Yao, Jianhua
    Cui, Yan
    Zhang, Xiao-Yong
    Zhao, Yi
    [J]. NATURE METHODS, 2024, 21 (04) : 712 - 722
  • [6] Benchmarking cell -type clustering methods for spatially resolved transcriptomics data
    Cheng, Andrew
    Hu, Guanyu
    Li, Wei Vivian
    [J]. BRIEFINGS IN BIOINFORMATICS, 2023, 24 (01)
  • [7] A comparative performance evaluation of imputation methods in spatially resolved transcriptomics data
    Avsar, Gulben
    Pir, Pinar
    [J]. MOLECULAR OMICS, 2023, 19 (02) : 162 - 173
  • [8] A review of recent advances in spatially resolved transcriptomics data analysis
    Gao, Yue
    Gao, Ying-Lian
    Jing, Jing
    Li, Feng
    Zheng, Chun-Hou
    Liu, Jin-Xing
    [J]. NEUROCOMPUTING, 2024, 603
  • [9] spatiAlign: an unsupervised contrastive learning model for data integration of spatially resolved transcriptomics
    Zhang, Chao
    Liu, Lin
    Zhang, Ying
    Li, Mei
    Fang, Shuangsang
    Kang, Qiang
    Chen, Ao
    Xu, Xun
    Zhang, Yong
    Li, Yuxiang
    [J]. GIGASCIENCE, 2024, 13
  • [10] EnDecon: cell type deconvolution of spatially resolved transcriptomics data via ensemble learning
    Tu, Jia-Juan
    Li, Hui-Sheng
    Yan, Hong
    Zhang, Xiao-Fei
    [J]. BIOINFORMATICS, 2023, 39 (01)