Integrating Spatially-Resolved Transcriptomics Data Across Tissues and Individuals: Challenges and Opportunities

被引:0
|
作者
Guo, Boyi [1 ]
Ling, Wodan [2 ]
Kwon, Sang Ho [3 ,4 ,5 ]
Panwar, Pratibha [6 ,7 ,8 ]
Ghazanfar, Shila [6 ,7 ,8 ]
Martinowich, Keri [3 ,4 ,9 ,10 ,11 ]
Hicks, Stephanie C. [1 ,12 ,13 ]
机构
[1] Johns Hopkins Bloomberg Sch Publ Hlth, Dept Biostat, Baltimore, MD 21205 USA
[2] Weill Cornell Med, Dept Populat Hlth Sci, Div Biostat, New York, NY 10065 USA
[3] Lieber Inst Brain Dev, Johns Hopkins Med Campus, Baltimore, MD 21205 USA
[4] Johns Hopkins Sch Med, Solomon H Snyder Dept Neurosci, Baltimore, MD 21205 USA
[5] Johns Hopkins Univ, Sch Med, Baltimore, MD 21205 USA
[6] Univ Sydney, Sch Math & Stat, Camperdown, NSW 2006, Australia
[7] Univ Sydney, Sydney Precis Data Sci Ctr, Camperdown, NSW 2006, Australia
[8] Univ Sydney, Charles Perkins Ctr, Camperdown, NSW 2006, Australia
[9] Johns Hopkins Sch Med, Dept Psychiat & Behav Sci, Baltimore, MD 21205 USA
[10] Johns Hopkins Univ, Johns Hopkins Kavli Neurosci Discovery Inst, Baltimore, MD 21218 USA
[11] Johns Hopkins Univ, Dept Biomed Engn, Baltimore, MD 21218 USA
[12] Johns Hopkins Univ, Ctr Computat Biol, Baltimore, MD 21218 USA
[13] Johns Hopkins Univ, Malone Ctr Engn Healthcare, Baltimore, MD 21218 USA
来源
SMALL METHODS | 2025年
基金
澳大利亚研究理事会;
关键词
integrative analysis; multi-sample; population-level; spatial alignment; spatial registration; spatially-resolved transcriptomics; RNA-SEQ DATA; HUMAN CELL ATLAS; SINGLE-CELL; GENE-EXPRESSION; NORMALIZATION; VISUALIZATION; BIOLOGY; IMPACT;
D O I
10.1002/smtd.202401194
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Advances in spatially-resolved transcriptomics (SRT) technologies have propelled the development of new computational analysis methods to unlock biological insights. The lowering cost of SRT data generation presents an unprecedented opportunity to create large-scale spatial atlases and enable population-level investigation, integrating SRT data across multiple tissues, individuals, species, or phenotypes. Here, unique challenges are described in the SRT data integration, where the analytic impact of varying spatial and biological resolutions is characterized and explored. A succinct review of spatially-aware integration methods and computational strategies is provided. Exciting opportunities to advance computational algorithms amenable to atlas-scale datasets along with standardized preprocessing methods, leading to improved sensitivity and reproducibility in the future are further highlighted.
引用
收藏
页数:13
相关论文
共 50 条
  • [41] Challenges and considerations for single-cell and spatially resolved transcriptomics sample collection during spaceflight
    Overbey, Eliah G.
    Das, Saswati
    Cope, Henry
    Madrigal, Pedro
    Andrusivova, Zaneta
    Frapard, Solene
    Klotz, Rebecca
    Bezdan, Daniela
    Gupta, Anjali
    Scott, Ryan T.
    Park, Jiwoon
    Chirko, Dawn
    Galazka, Jonathan M.
    Costes, Sylvain, V
    Mason, Christopher E.
    Herranz, Raul
    Szewczyk, Nathaniel J.
    Borg, Joseph
    Giacomello, Stefania
    CELL REPORTS METHODS, 2022, 2 (11):
  • [42] EnDecon: cell type deconvolution of spatially resolved transcriptomics data via ensemble learning
    Tu, Jia-Juan
    Li, Hui-Sheng
    Yan, Hong
    Zhang, Xiao-Fei
    BIOINFORMATICS, 2023, 39 (01)
  • [43] Define and visualize pathological architectures of human tissues from spatially resolved transcriptomics using deep learning
    Chang, Yuzhou
    He, Fei
    Wang, Juexin
    Chen, Shuo
    Li, Jingyi
    Liu, Jixin
    Yu, Yang
    Su, Li
    Ma, Anjun
    Allen, Carter
    Lin, Yu
    Sun, Shaoli
    Liu, Bingqiang
    Otero, Jose Javier
    Chung, Dongjun
    Fu, Hongjun
    Li, Zihai
    Xu, Dong
    Ma, Qin
    COMPUTATIONAL AND STRUCTURAL BIOTECHNOLOGY JOURNAL, 2022, 20 : 4600 - 4617
  • [44] Dissecting tumor microenvironment from spatially resolved transcriptomics data by heterogeneous graph learning
    Zuo, Chunman
    Xia, Junjie
    Chen, Luonan
    NATURE COMMUNICATIONS, 2024, 15 (01)
  • [45] Multi-View Adaptive Fusion Network for Spatially Resolved Transcriptomics Data Clustering
    Zhu, Yanran
    He, Xiao
    Tang, Chang
    Liu, Xinwang
    Liu, Yuanyuan
    He, Kunlun
    IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 2024, 36 (12) : 8889 - 8900
  • [46] Computational elucidation of spatial gene expression variation from spatially resolved transcriptomics data
    Li, Ke
    Yan, Congcong
    Li, Chenghao
    Chen, Lu
    Zhao, Jingting
    Zhang, Zicheng
    Bao, Siqi
    Sun, Jie
    Zhou, Meng
    MOLECULAR THERAPY NUCLEIC ACIDS, 2022, 27 : 404 - 411
  • [47] An interpretable Bayesian clustering approach with feature selection for analyzing spatially resolved transcriptomics data
    Li, Huimin
    Zhu, Bencong
    Jiang, Xi
    Guo, Lei
    Xie, Yang
    Xu, Lin
    Li, Qiwei
    BIOMETRICS, 2024, 80 (03)
  • [48] Opportunities and challenges of single-cell and spatially resolved genomics methods for neuroscience discovery
    Bonev, Boyan
    Goncalo, Castelo-Branco
    Chen, Fei
    Codeluppi, Simone
    Corces, M. Ryan
    Fan, Jean
    Heiman, Myriam
    Harris, Kenneth
    Inoue, Fumitaka
    Kellis, Manolis
    Levine, Ariel
    Lotfollahi, Mo
    Luo, Chongyuan
    Maynard, Kristen R.
    Nitzan, Mor
    Ramani, Vijay
    Satijia, Rahul
    Schirmer, Lucas
    Shen, Yin
    Sun, Na
    Green, Gilad S.
    Theis, Fabian
    Wang, Xiao
    Welch, Joshua D.
    Gokce, Ozgun
    Konopka, Genevieve
    Liddelow, Shane
    Macosko, Evan
    Bayraktar, Omer
    Habib, Naomi
    Nowakowski, Tomasz J.
    NATURE NEUROSCIENCE, 2024, 27 (12) : 2292 - 2309
  • [49] Integrating spatial transcriptomics data across different conditions, technologies and developmental stages
    Zhou, Xiang
    Dong, Kangning
    Zhang, Shihua
    NATURE COMPUTATIONAL SCIENCE, 2023, 3 (10): : 894 - 906
  • [50] Integrating spatial transcriptomics data across different conditions, technologies and developmental stages
    Xiang Zhou
    Kangning Dong
    Shihua Zhang
    Nature Computational Science, 2023, 3 : 894 - 906