Optimizing Variational Physics-Informed Neural Networks Using Least Squares
被引:0
|
作者:
Uriarte, Carlos
论文数: 0引用数: 0
h-index: 0
机构:
Univ Pais Vasco Euskal Herriko Unibertsitatea UPV, Leioa, SpainUniv Pais Vasco Euskal Herriko Unibertsitatea UPV, Leioa, Spain
Uriarte, Carlos
[1
]
Bastidas, Manuela
论文数: 0引用数: 0
h-index: 0
机构:
Univ Nacl Colombia, Medellin, ColombiaUniv Pais Vasco Euskal Herriko Unibertsitatea UPV, Leioa, Spain
Bastidas, Manuela
[2
]
Pardo, David
论文数: 0引用数: 0
h-index: 0
机构:
Univ Pais Vasco Euskal Herriko Unibertsitatea UPV, Leioa, Spain
Basque Ctr Appl Math BCAM, Bilbao, Spain
Basque Fdn Sci Ikerbasque, Bilbao, SpainUniv Pais Vasco Euskal Herriko Unibertsitatea UPV, Leioa, Spain
Pardo, David
[1
,3
,4
]
Taylor, Jamie M.
论文数: 0引用数: 0
h-index: 0
机构:
CUNEF Univ, Madrid, SpainUniv Pais Vasco Euskal Herriko Unibertsitatea UPV, Leioa, Spain
Taylor, Jamie M.
[5
]
Rojas, Sergio
论文数: 0引用数: 0
h-index: 0
机构:
Monash Univ, Melbourne, AustraliaUniv Pais Vasco Euskal Herriko Unibertsitatea UPV, Leioa, Spain
Rojas, Sergio
[6
]
机构:
[1] Univ Pais Vasco Euskal Herriko Unibertsitatea UPV, Leioa, Spain
Neural networks;
Variational problems;
Gradient-descent optimization;
Least squares;
D O I:
10.1016/j.camwa.2025.02.022
中图分类号:
O29 [应用数学];
学科分类号:
070104 ;
摘要:
Variational Physics-Informed Neural Networks often suffer from poor convergence when using stochastic gradient-descent-based optimizers. By introducing a least squares solver for the weights of the last layer of the neural network, we improve the convergence of the loss during training in most practical scenarios. This work analyzes the computational cost of the resulting hybrid leastsquares/gradient-descent optimizer and explains how to implement it efficiently. In particular, we show that a traditional implementation based on backward-mode automatic differentiation leads to a prohibitively expensive algorithm. To remedy this, we propose using either forward- mode automatic differentiation or an ultraweak-type scheme that avoids the differentiation of trial functions in the discrete weak formulation. The proposed alternatives are up to one hundred times faster than the traditional one, recovering a computational cost-per-iteration similar to that of a conventional gradient-descent-based optimizer alone. To support our analysis, we derive computational estimates and conduct numerical experiments in one- and two-dimensional problems.