DR-GPT: A large language model for medical report analysis of diabetic retinopathy patients

被引:0
|
作者
Jaskari, Joel [1 ]
Sahlsten, Jaakko [1 ]
Summanen, Paula [2 ,3 ]
Moilanen, Jukka [2 ,3 ]
Lehtola, Erika [2 ,3 ]
Aho, Marjo [4 ,5 ]
Sapyska, Elina [4 ,5 ]
Hietala, Kustaa [6 ]
Kaski, Kimmo [1 ,7 ]
机构
[1] Aalto Univ, Dept Comp Sci, Espoo, Finland
[2] Univ Helsinki, Dept Ophthalmol, Helsinki, Finland
[3] Helsinki Univ Hosp, Helsinki, Finland
[4] Helsinki Univ Hosp, Dept Ophthalmol, Helsinki, Finland
[5] Univ Helsinki, Helsinki, Finland
[6] Cent Finland Hlth Care Dist, Jyvaskyla, Finland
[7] Alan Turing Inst, London, England
来源
PLOS ONE | 2024年 / 19卷 / 10期
关键词
D O I
10.1371/journal.pone.0297706
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Diabetic retinopathy (DR) is a sight-threatening condition caused by diabetes. Screening programmes for DR include eye examinations, where the patient's fundi are photographed, and the findings, including DR severity, are recorded in the medical report. However, statistical analyses based on DR severity require structured labels that calls for laborious manual annotation process if the report format is unstructured. In this work, we propose a large language model DR-GPT for classification of the DR severity from unstructured medical reports. On a clinical set of medical reports, DR-GPT reaches 0.975 quadratic weighted Cohen's kappa using truncated Early Treatment Diabetic Retinopathy Study scale. When DR-GPT annotations for unlabeled data are paired with corresponding fundus images, the additional data improves image classifier performance with statistical significance. Our analysis shows that large language models can be applied for unstructured medical report databases to classify diabetic retinopathy with a variety of applications.
引用
收藏
页数:14
相关论文
共 50 条
  • [41] MACULAR EDEMA IN DIABETIC-RETINOPATHY STUDY PATIENTS - DIABETIC-RETINOPATHY STUDY REPORT NUMBER-12
    FERRIS, FL
    PODGOR, MJ
    DAVIS, MD
    OPHTHALMOLOGY, 1987, 94 (07) : 754 - 760
  • [42] Constructing Benchmark Databases and Protocols for Medical Image Analysis: Diabetic Retinopathy
    Kauppi, Tomi
    Kamarainen, Joni-Kristian
    Lensu, Lasse
    Kalesnykiene, Valentina
    Sorri, Iiris
    Uusitalo, Hannu
    Kalviainen, Heikki
    COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE, 2013, 2013
  • [43] A BASELINE SITUATION ANALYSIS OF DIABETIC RETINOPATHY (DR) SERVICES (DRS) IN 11 COMMONWEALTH COUNTRIES
    Blows, P.
    Zondervan, M.
    Walker, C.
    Foster, A.
    Peto, T.
    EUROPEAN JOURNAL OF OPHTHALMOLOGY, 2015, 25 (03) : E21 - E22
  • [44] Hybrid model for analysis of abnormalities in diabetic cardiomyopathy and diabetic retinopathy related images
    Shaik, Fahimuddin
    Sharma, Anil Kumar
    Ahmed, Syed Musthak
    SPRINGERPLUS, 2016, 5
  • [46] ChatGPT and GPT-4 in Ophthalmology: Applications of Large Language Model Artificial Intelligence in Retina
    Ong, Joshua
    Hariprasad, Seenu M.
    Chhablani, Jay
    OPHTHALMIC SURGERY LASERS & IMAGING RETINA, 2023, 54 (10): : 557 - 562
  • [47] Large language models in cryptocurrency securities cases: can a GPT model meaningfully assist lawyers?
    Trozze, Arianna
    Davies, Toby
    Kleinberg, Bennett
    ARTIFICIAL INTELLIGENCE AND LAW, 2024,
  • [48] A medical multimodal large language model for future pandemics
    Fenglin Liu
    Tingting Zhu
    Xian Wu
    Bang Yang
    Chenyu You
    Chenyang Wang
    Lei Lu
    Zhangdaihong Liu
    Yefeng Zheng
    Xu Sun
    Yang Yang
    Lei Clifton
    David A. Clifton
    npj Digital Medicine, 6
  • [49] A medical multimodal large language model for future pandemics
    Liu, Fenglin
    Zhu, Tingting
    Wu, Xian
    Yang, Bang
    You, Chenyu
    Wang, Chenyang
    Lu, Lei
    Liu, Zhangdaihong
    Zheng, Yefeng
    Sun, Xu
    Yang, Yang
    Clifton, Lei
    Clifton, David A.
    NPJ DIGITAL MEDICINE, 2023, 6 (01)
  • [50] GPT Prompt Engineering for a Large Language Model-Based Process Improvement Generation System
    Lee, Donghyeon
    Lee, Jaewook
    Shin, Dongil
    KOREAN JOURNAL OF CHEMICAL ENGINEERING, 2024, 41 (12) : 3263 - 3286