DR-GPT: A large language model for medical report analysis of diabetic retinopathy patients

被引:0
|
作者
Jaskari, Joel [1 ]
Sahlsten, Jaakko [1 ]
Summanen, Paula [2 ,3 ]
Moilanen, Jukka [2 ,3 ]
Lehtola, Erika [2 ,3 ]
Aho, Marjo [4 ,5 ]
Sapyska, Elina [4 ,5 ]
Hietala, Kustaa [6 ]
Kaski, Kimmo [1 ,7 ]
机构
[1] Aalto Univ, Dept Comp Sci, Espoo, Finland
[2] Univ Helsinki, Dept Ophthalmol, Helsinki, Finland
[3] Helsinki Univ Hosp, Helsinki, Finland
[4] Helsinki Univ Hosp, Dept Ophthalmol, Helsinki, Finland
[5] Univ Helsinki, Helsinki, Finland
[6] Cent Finland Hlth Care Dist, Jyvaskyla, Finland
[7] Alan Turing Inst, London, England
来源
PLOS ONE | 2024年 / 19卷 / 10期
关键词
D O I
10.1371/journal.pone.0297706
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Diabetic retinopathy (DR) is a sight-threatening condition caused by diabetes. Screening programmes for DR include eye examinations, where the patient's fundi are photographed, and the findings, including DR severity, are recorded in the medical report. However, statistical analyses based on DR severity require structured labels that calls for laborious manual annotation process if the report format is unstructured. In this work, we propose a large language model DR-GPT for classification of the DR severity from unstructured medical reports. On a clinical set of medical reports, DR-GPT reaches 0.975 quadratic weighted Cohen's kappa using truncated Early Treatment Diabetic Retinopathy Study scale. When DR-GPT annotations for unlabeled data are paired with corresponding fundus images, the additional data improves image classifier performance with statistical significance. Our analysis shows that large language models can be applied for unstructured medical report databases to classify diabetic retinopathy with a variety of applications.
引用
收藏
页数:14
相关论文
共 50 条
  • [31] Evaluation of GPT Large Language Model Performance on RSNA 2023 Case of the Day Questions
    Mukherjee, Pritam
    Hou, Benjamin
    Suri, Abhinav
    Zhuang, Yan
    Parnell, Christopher
    Lee, Nicholas
    Stroie, Oana
    Jain, Ravi
    Wang, Kenneth C.
    Sharma, Komal
    Summers, Ronald M.
    RADIOLOGY, 2024, 313 (01)
  • [32] The United Kingdom Diabetic Retinopathy Electronic Medical Record Users Group: Report 3: Baseline Retinopathy and Clinical Features Predict Progression of Diabetic Retinopathy
    Lee, Cecilia S.
    Lee, Aaron Y.
    Baughman, Douglas
    Sim, Dawn
    Akelere, Toks
    Brand, Christopher
    Crabb, David P.
    Denniston, Alastair K.
    Downey, Louise
    Fitt, Alan
    Khan, Rehna
    Mahmood, Sajad
    Mandal, Kaveri
    Mckibbin, Martin
    Menon, Geeta
    Lobo, Aires
    Kumar, B. Vineeth
    Natha, Salim
    Varma, Atul
    Wilkinson, Elizabeth
    Mitry, Danny
    Bailey, Clare
    Chakravarthy, Usha
    Tufail, Adnan
    Egan, Catherine
    AMERICAN JOURNAL OF OPHTHALMOLOGY, 2017, 180 : 64 - 71
  • [33] Diabetic Retinopathy and Diabetic Foot Syndrome in Patients of a Sub-Saharan Megacity (Kinshasa, DR Kongo)
    Knappe, S.
    Stoll, D.
    Bambi, M. T.
    Kilangalanga, J.
    Guthoff, R. F.
    KLINISCHE MONATSBLATTER FUR AUGENHEILKUNDE, 2013, 230 (01) : 64 - 71
  • [34] Evaluation of the safety, accuracy, and helpfulness of the GPT-4.0 Large Language Model in neurosurgery
    Huang, Kevin T.
    Mehta, Neel H.
    Gupta, Saksham
    See, Alfred P.
    Arnaout, Omar
    JOURNAL OF CLINICAL NEUROSCIENCE, 2024, 123 : 151 - 156
  • [35] Evaluating the Effectiveness of GPT Large Language Model for News Classification in the IPTC News Ontology
    Fatemi, Bahareh
    Rabbi, Fazle
    Opdahl, Andreas L.
    IEEE ACCESS, 2023, 11 : 145386 - 145394
  • [36] Optimizing Medical Management in Patients with Sight-Threatening Diabetic Retinopathy
    Mamtora S.
    Sandinha T.
    Carey P.E.
    Steel D.H.W.
    Ophthalmology and Therapy, 2017, 6 (1) : 105 - 114
  • [37] Relevance of medical information obtained from Chat- GPT: Are large language models friends or foes?
    Mesnier, Jules
    Suc, Gaspard
    Sayah, Neila
    Abtan, Jeremie
    Steg, Philippe Gabriel
    ARCHIVES OF CARDIOVASCULAR DISEASES, 2023, 116 (10) : 485 - 486
  • [38] Evaluating the efficacy of AI systems in diabetic retinopathy detection: A comparative analysis of Mona DR and IDx-DR
    Grzybowski, Andrzej
    Peeters, Freya
    Barao, Rafael Correia
    Brona, Piotr
    Rommes, Stef
    Krzywicki, Tomasz
    Stalmans, Ingeborg
    Jacob, Julie
    ACTA OPHTHALMOLOGICA, 2024,
  • [39] Risk of Diabetic Retinopathy (DR) Progression in Patients during 1 year of Semaglutide use
    Cooper, Blake
    Howe, Kellie
    Cooper, Amelia
    De la Paz, Matthew
    INVESTIGATIVE OPHTHALMOLOGY & VISUAL SCIENCE, 2022, 63 (07)
  • [40] Results after lens extraction in patients with diabetic retinopathy -: Early treatment diabetic retinopathy study report number 25
    Chew, EY
    Benson, WE
    Remaley, NA
    Lindley, AA
    Burton, TC
    Csaky, K
    Williams, GA
    Ferris, FL
    ARCHIVES OF OPHTHALMOLOGY, 1999, 117 (12) : 1600 - 1606