DR-GPT: A large language model for medical report analysis of diabetic retinopathy patients

被引:0
|
作者
Jaskari, Joel [1 ]
Sahlsten, Jaakko [1 ]
Summanen, Paula [2 ,3 ]
Moilanen, Jukka [2 ,3 ]
Lehtola, Erika [2 ,3 ]
Aho, Marjo [4 ,5 ]
Sapyska, Elina [4 ,5 ]
Hietala, Kustaa [6 ]
Kaski, Kimmo [1 ,7 ]
机构
[1] Aalto Univ, Dept Comp Sci, Espoo, Finland
[2] Univ Helsinki, Dept Ophthalmol, Helsinki, Finland
[3] Helsinki Univ Hosp, Helsinki, Finland
[4] Helsinki Univ Hosp, Dept Ophthalmol, Helsinki, Finland
[5] Univ Helsinki, Helsinki, Finland
[6] Cent Finland Hlth Care Dist, Jyvaskyla, Finland
[7] Alan Turing Inst, London, England
来源
PLOS ONE | 2024年 / 19卷 / 10期
关键词
D O I
10.1371/journal.pone.0297706
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Diabetic retinopathy (DR) is a sight-threatening condition caused by diabetes. Screening programmes for DR include eye examinations, where the patient's fundi are photographed, and the findings, including DR severity, are recorded in the medical report. However, statistical analyses based on DR severity require structured labels that calls for laborious manual annotation process if the report format is unstructured. In this work, we propose a large language model DR-GPT for classification of the DR severity from unstructured medical reports. On a clinical set of medical reports, DR-GPT reaches 0.975 quadratic weighted Cohen's kappa using truncated Early Treatment Diabetic Retinopathy Study scale. When DR-GPT annotations for unlabeled data are paired with corresponding fundus images, the additional data improves image classifier performance with statistical significance. Our analysis shows that large language models can be applied for unstructured medical report databases to classify diabetic retinopathy with a variety of applications.
引用
收藏
页数:14
相关论文
共 50 条
  • [21] Analysis of prevalence and major risk factors associated with diabetic retinopathy (DR)
    Maria Castillo-Oti, Jose
    Munoz-Cacho, Pedro
    ATENCION PRIMARIA, 2021, 53 (01): : 121 - 122
  • [22] Fake-GPT: Detecting Fake Image via Large Language Model
    Fan, Yuming
    Yang, Dongming
    Zhang, Jiguang
    Yan, Bang
    Zou, Yuexian
    PATTERN RECOGNITION AND COMPUTER VISION, PRCV 2024, PT VIII, 2025, 15038 : 122 - 136
  • [23] Monitoring Patients with Glioblastoma by Using a Large Language Model: Accurate Summarization of Radiology Reports with GPT-4
    Laukamp, Kai R.
    Terzis, Robert A.
    Werner, Jan-Michael
    Galldiks, Norbert
    Lennartz, Simon
    Maintz, David
    Reimer, Robert
    Fervers, Philipp
    Gertz, Roman Johannes
    Persigehl, Thorsten
    Rubbert, Christian
    Lehnen, Nils C.
    Deuschl, Cornelius
    Schlamann, Marc
    Schoenfeld, Michael H.
    Kottlors, Jonathan
    RADIOLOGY, 2024, 312 (01)
  • [24] DIABETIC-RETINOPATHY - INTERPRETATION BY PATIENTS OF SOME MEDICAL TERMS
    AUFSEESSER, M
    LACROIX, A
    BINYET, S
    ASSAL, JP
    JOURNAL FRANCAIS D OPHTALMOLOGIE, 1995, 18 (01): : 27 - 32
  • [25] Evaluating Large Language Model-Assisted Emergency Triage: A Comparison of Acuity Assessments by GPT-4 and Medical Experts
    Haim, Gal Ben
    Saban, Mor
    Barash, Yiftach
    Cirulnik, David
    Shaham, Amit
    Eisenman, Ben Zion
    Burshtein, Livnat
    Mymon, Orly
    Klang, Eyal
    JOURNAL OF CLINICAL NURSING, 2024,
  • [26] Factor analysis of diabetic retinopathy in Chinese patients
    Zheng, Weiwei
    DIABETES RESEARCH AND CLINICAL PRACTICE, 2011, 92 (02) : 244 - 252
  • [27] Dr. GPT will see you now: the ability of large language model-linked chatbots to provide colorectal cancer screening recommendations
    Huo, Bright
    Mckechnie, Tyler
    Ortenzi, Monica
    Lee, Yung
    Antoniou, Stavros
    Mayol, Julio
    Ahmed, Hassaan
    Boudreau, Vanessa
    Ramji, Karim
    Eskicioglu, Cagla
    HEALTH AND TECHNOLOGY, 2024, 14 (03) : 463 - 469
  • [28] Dr. GPT will see you now: the ability of large language model-linked chatbots to provide colorectal cancer screening recommendations
    Bright Huo
    Tyler McKechnie
    Monica Ortenzi
    Yung Lee
    Stavros Antoniou
    Julio Mayol
    Hassaan Ahmed
    Vanessa Boudreau
    Karim Ramji
    Cagla Eskicioglu
    Health and Technology, 2024, 14 : 463 - 469
  • [29] Tear Fluid Proteins Analysis from Donors with Diabetes and Diabetic Retinopathy (DR)
    Fernandes, Rosa
    EUROPEAN JOURNAL OF OPHTHALMOLOGY, 2023, 33 (01) : 16 - 16
  • [30] NM-GPT: Advancing Nuclear Medicine Report Processing Through a Specialized Fine-tuned Large Language Model
    Lyu, Zhiliang
    Zeng, Fang
    Guo, Ning
    Li, Xiang
    Li, Quanzheng
    JOURNAL OF NUCLEAR MEDICINE, 2024, 65