High-Density STT-Assisted SOT-MRAM (SAS-MRAM) for Energy-Efficient AI Applications

被引:0
|
作者
Xue, Fen [1 ]
Hwang, William [1 ]
Zhang, Fan [2 ]
Tsai, Wilman [3 ]
Fan, Deliang [2 ]
Wang, Shan X. [1 ,3 ]
机构
[1] Stanford Univ, Dept Elect Engn, Stanford, CA 94350 USA
[2] Johns Hopkins Univ, Dept Elect & Comp Engn, Baltimore, MD 21218 USA
[3] Stanford Univ, Dept Mat Sci & Engn, Stanford, CA 94305 USA
关键词
Artificial intelligence (AI) hardware; energy-efficient computing; SAS-MRAM; spin-orbit torque (SOT); spintronics; spin-transfer torque (STT); MAGNETIC TUNNEL-JUNCTION; SPIN-ORBIT; TORQUE MEMORY;
D O I
10.1109/TMAG.2024.3486616
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Energy-efficient computing is essential for addressing the rising power demands of modern data-intensive applications and ensuring sustainable technology advancement. Magnetoresistive random access memory (MRAM) has emerged as a pivotal technology in this domain, offering nonvolatile memory solutions that combine low power consumption with high performance. Spin-orbit torque (SOT) MRAM (SOT-MRAM) and its variants stand out for its potential to deliver SRAM-like performance at a higher bit-cell density. In this article, we present a novel high-density STT-assisted SOT-MRAM (SAS-MRAM) technology designed for energy-efficient artificial intelligence (AI) applications. SAS-MRAM capitalizes on the advantages of both spin-transfer torque (STT) and SOT mechanisms, utilizing a multi-bit-shared SOT line to achieve high-speed, high-density, and high-endurance memory performance. Our experimental results validate the potential of SAS-MRAM to address the limitations of current memory technologies. An AI application of ResNet-18 deployed in SAS-MRAM shows similar to 32.7x energy-delay-product (EDP) benefits compared to that in SRAM, presenting a promising solution for future AI hardware implementations, especially at edge where low-power training and inference of AI models are necessary.
引用
收藏
页数:8
相关论文
共 50 条
  • [21] Towards Efficient SOT-Assisted STT-MRAM Cell Switching Using Reinforcement Learning
    Ender, Johannes
    de Orio, Roberto Lacerda
    Gos, Wolfgang
    Sverdlov, Viktor
    LARGE-SCALE SCIENTIFIC COMPUTATIONS, LSSC 2023, 2024, 13952 : 83 - 90
  • [22] IMFlexCom: Energy Efficient In-Memory Flexible Computing Using Dual-Mode SOT-MRAM
    Parveen, Farhana
    Angizi, Shaahin
    Fan, Deliang
    ACM JOURNAL ON EMERGING TECHNOLOGIES IN COMPUTING SYSTEMS, 2018, 14 (03)
  • [23] A Statistical Study of Magnetic Tunnel Junctions for High-Density Spin Torque Transfer-MRAM (STT-MRAM)
    Beach, R.
    Min, T.
    Horng, C.
    Chen, Q.
    Sherman, P.
    Le, S.
    Young, S.
    Yang, K.
    Yu, H.
    Lu, X.
    Kula, W.
    Zhong, T.
    Xiao, R.
    Zhong, A.
    Liu, G.
    Kan, J.
    Yuan, J.
    Chen, J.
    Tong, R.
    Chien, J.
    Torng, T.
    Tang, D.
    Wang, P.
    Chen, M.
    Assefa, S.
    Qazi, M.
    DeBrosse, J.
    Gaidis, M.
    Kanakasabapathy, S.
    Lu, Y.
    Nowak, J.
    O'Sullivan, E.
    Maffitt, T.
    Sun, J. Z.
    Gallagher, W. J.
    IEEE INTERNATIONAL ELECTRON DEVICES MEETING 2008, TECHNICAL DIGEST, 2008, : 305 - +
  • [24] Area and Energy Efficient SOT-MRAM Bit Cell Based on 3 Transistors With Shared Diffusion Regions
    Liu, Enlong
    Li, Kunkun
    Shen, Ao
    He, Shikun
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS II-EXPRESS BRIEFS, 2023, 70 (06) : 2206 - 2210
  • [25] Optimization on Dry-Etching Process for High-Density STT-MRAM
    Wang, Xufeng
    Yu, Pingping
    Jiang, Yanfeng
    IEEE TRANSACTIONS ON NANOTECHNOLOGY, 2021, 20 : 161 - 167
  • [26] A Disturbance-Free Energy-Efficient STT-MRAM Based on Complementary Polarizers
    Qu, Lianhua
    Zhao, Zhenyu
    Wang, Yao
    Tang, Haoyue
    Li, Huan
    Deng, Quan
    Li, Peng
    IEEE ELECTRON DEVICE LETTERS, 2016, 37 (10) : 1288 - 1291
  • [27] Design of High-RA STT-MRAM for Future Energy-Efficient In-Memory Computing
    Hong, Ming-Chun
    Su, Yi-Hui
    Chen, Guan-Long
    Hsin, Yu-Chen
    Chang, Yao-Jen
    Chen, Kuan-Ming
    Yang, Shan-Yi
    Wang, I-Jung
    Rahaman, S. K. Ziaur
    Lee, Hsin-Han
    Wei, Jeng-Hua
    Sheu, Shyh-Shyuan
    Lo, Wei-Chung
    Chang, Shih-Chieh
    Hou, Tuo-Hung
    2023 INTERNATIONAL VLSI SYMPOSIUM ON TECHNOLOGY, SYSTEMS AND APPLICATIONS, VLSI-TSA/VLSI-DAT, 2023,
  • [28] Toward Energy-Efficient STT-MRAM Design With Multi-Modes Reconfiguration
    Cai, Hao
    Chen, Juntong
    Zhou, Yongliang
    Zhao, Weisheng
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS II-EXPRESS BRIEFS, 2021, 68 (07) : 2633 - 2639
  • [29] Energy-Efficient Dynamic Data Encoding for Multi-Level STT-MRAM
    Alfailakawi, Mohammad Gh.
    Ahmad, Imtiaz
    Elghandour, Sarah
    2018 31ST INTERNATIONAL CONFERENCE ON VLSI DESIGN AND 2018 17TH INTERNATIONAL CONFERENCE ON EMBEDDED SYSTEMS (VLSID & ES), 2018, : 428 - 433
  • [30] Designing Efficient and High-Performance AI Accelerators With Customized STT-MRAM
    Mishty, Kaniz
    Sadi, Mehdi
    IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, 2021, 29 (10) : 1730 - 1742