ATTRACTORS FOR THE NAVIER-STOKES-CAHN-HILLIARD SYSTEM WITH CHEMOTAXIS AND SINGULAR POTENTIAL IN 2D

被引:0
|
作者
He, Jingning [1 ]
机构
[1] Hangzhou Normal Univ, Sch Math, Hangzhou 311121, Peoples R China
基金
中国国家自然科学基金;
关键词
Navier-Stokes-Cahn-Hilliard system; chemotaxis; singular potential; attractors; EQUATIONS; BEHAVIOR;
D O I
10.3934/cpaa.2025050
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We analyze the long-time behavior of solutions to a Navier-Stokes- Cahn-Hilliard system with chemotaxis effects and a solution-dependent mass source term. The fluid velocity v satisfies the Navier-Stokes system, the phase field variable phi satisfies a convective Cahn-Hilliard equation with a singular potential (e.g., the Flory-Huggins type), the nutrient density sigma satisfies an advection-diffusion-reaction. For the initial boundary value problem in 2D, we prove the existence of the global attractor in a suitable phase space. Furthermore, we obtain the existence of an exponential attractor, and we can thus deduce that the global attractor is of finite fractal dimension.
引用
收藏
页数:25
相关论文
共 50 条
  • [31] On the viscous Cahn-Hilliard-Oono system with chemotaxis and singular potential
    He, Jingning
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2022, 45 (07) : 3732 - 3763
  • [32] Large deviation principle for the 2D stochastic Cahn–Hilliard–Navier–Stokes equations
    Zhaoyang Qiu
    Huaqiao Wang
    Zeitschrift für angewandte Mathematik und Physik, 2020, 71
  • [33] Invariant measure for 2D stochastic Cahn-Hilliard-Navier-Stokes equations
    Qiu, Zhaoyang
    Wang, Huaqiao
    Huang, Daiwen
    STOCHASTICS AND DYNAMICS, 2023, 23 (03)
  • [34] Numerical investigation of the sharp-interface limit of the Navier-Stokes-Cahn-Hilliard equations
    Demont, T. H. B.
    Stoter, S. K. F.
    van Brummelen, E. H.
    JOURNAL OF FLUID MECHANICS, 2023, 970
  • [35] Efficient numerical solution of Cahn-Hilliard-Navier-Stokes fluids in 2D
    Kay, David
    Welford, Richard
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2007, 29 (06): : 2241 - 2257
  • [36] On the strong solution of 3D non-isothermal Navier-Stokes-Cahn-Hilliard equations
    Zhao, Xiaopeng
    JOURNAL OF MATHEMATICAL PHYSICS, 2023, 64 (03)
  • [37] SPLITTING SCHEMES FOR A NAVIER-STOKES-CAHN-HILLIARD MODEL FOR TWO FLUIDS WITH DIFFERENT DENSITIES
    Guillen-Gonzalez, Francisco
    Tierra, Giordano
    JOURNAL OF COMPUTATIONAL MATHEMATICS, 2014, 32 (06) : 643 - 664
  • [38] New efficient time-stepping schemes for the Navier-Stokes-Cahn-Hilliard equations
    Li, Minghui
    Xu, Chuanju
    COMPUTERS & FLUIDS, 2021, 231
  • [39] Energy exchange analysis in droplet dynamics via the Navier-Stokes-Cahn-Hilliard model
    Espath, L. F. R.
    Sarmiento, A. F.
    Vignal, P.
    Varga, B. O. N.
    Cortes, A. M. A.
    Dalcin, L.
    Calo, V. M.
    JOURNAL OF FLUID MECHANICS, 2016, 797 : 389 - 430
  • [40] The vanishing viscosity limit for a 2D Cahn-Hilliard-Navier-Stokes system with a slip boundary condition
    Zhou, Yong
    Fan, Jishan
    NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2013, 14 (02) : 1130 - 1134