On the strong solution of 3D non-isothermal Navier-Stokes-Cahn-Hilliard equations

被引:0
|
作者
Zhao, Xiaopeng [1 ]
机构
[1] Northeastern Univ, Coll Sci, Shenyang 110004, Peoples R China
关键词
DIFFUSE INTERFACE MODEL; INCOMPRESSIBLE FLUIDS; SYSTEM; ATTRACTOR; FLOWS;
D O I
10.1063/5.0099260
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In this paper, we consider the global existence of strong solutions of a thermodynamically consistent diffuse interface model describing twophase flows of incompressible fluids in a non-isothermal setting. In the diffuse interface model, the evolution of the velocity u is ruled by the Navier-Stokes system, while the order parameter f representing the difference of the fluid concentration of the two fluids is assumed to satisfy a convective Cahn-Hilliard equation. The effects of the temperature are prescribed by a suitable form of heat equation. By using a refined pure energy method, we prove the existence of the global strong solution by assuming that ||u0|| H-2(3) + ||f0. ||(2) H-4|| +.||(2) H-3|| +.f20 - 1.2 L2 +..0. L1 is sufficiently small, and higher order derivatives can be arbitrarily large.
引用
收藏
页数:13
相关论文
共 50 条
  • [1] Extension Criterion to the 3D Navier-Stokes-Cahn-Hilliard equations
    Du, Juan
    Wu, Fan
    BULLETIN OF THE MALAYSIAN MATHEMATICAL SCIENCES SOCIETY, 2024, 47 (02)
  • [2] Navier-Stokes-Cahn-Hilliard system of equations
    Dlotko, Tomasz
    JOURNAL OF MATHEMATICAL PHYSICS, 2022, 63 (11)
  • [3] On a New Spatial Discretization for a Regularized 3D Compressible Isothermal Navier-Stokes-Cahn-Hilliard System of Equations with Boundary Conditions
    Balashov, Vladislav
    Zlotnik, Alexander
    JOURNAL OF SCIENTIFIC COMPUTING, 2021, 86 (03)
  • [4] Energy conservation for weak solutions to the 3D Navier-Stokes-Cahn-Hilliard system
    Wang, Yanqing
    Ye, Yulin
    APPLIED MATHEMATICS LETTERS, 2022, 123
  • [5] ATTRACTORS FOR THE NAVIER-STOKES-CAHN-HILLIARD SYSTEM
    Giorgini, Andrea
    Temam, Roger
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES S, 2022, 15 (08): : 2249 - 2274
  • [6] Extension Criterion to the 3D Navier–Stokes–Cahn–Hilliard equations
    Juan Du
    Fan Wu
    Bulletin of the Malaysian Mathematical Sciences Society, 2024, 47
  • [7] The compressible Navier-Stokes-Cahn-Hilliard equations with dynamic boundary conditions
    Cherfils, Laurence
    Feireisl, Eduard
    Michalek, Martin
    Miranville, Alain
    Petcu, Madalina
    Prazak, Dalibor
    MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 2019, 29 (14): : 2557 - 2584
  • [8] A Comparison of Cahn-Hilliard and Navier-Stokes-Cahn-Hilliard Models on Manifolds
    Olshanskii, Maxim
    Palzhanov, Yerbol
    Quaini, Annalisa
    VIETNAM JOURNAL OF MATHEMATICS, 2022, 50 (04) : 929 - 945
  • [9] UNIQUENESS AND REGULARITY FOR THE NAVIER-STOKES-CAHN-HILLIARD SYSTEM
    Giorgini, Andrea
    Miranville, Alain
    Temam, Roger
    SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2019, 51 (03) : 2535 - 2574
  • [10] Weak and strong solutions to the nonhomogeneous incompressible Navier-Stokes-Cahn-Hilliard system
    Giorgini, Andrea
    Temam, Roger
    JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2020, 144 : 194 - 249