Navier-Stokes-Cahn-Hilliard system of equations

被引:4
|
作者
Dlotko, Tomasz [1 ]
机构
[1] Univ Silesia Katowice, Inst Math, Bankowa 14, PL-40007 Katowice, Poland
关键词
OPERATOR; LR;
D O I
10.1063/5.0097137
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
A growing interest in considering the "hybrid systems " of equations describing more complicated physical phenomena was observed throughout the last 10 years. We mean here, in particular, the so-called Navier-Stokes-Cahn-Hilliard equation, the Navier-Stokes-Poison equations, or the Cahn-Hilliard-Hele-Shaw equation. There are specific difficulties connected with considering such systems. Using the semigroup approach, we discuss here the existence-uniqueness of solutions to the Navier-Stokes-Cahn-Hilliard system, explaining, in particular, the limitation of maximal regularity of the local solutions imposed by the chosen boundary conditions. Published under an exclusive license by AIP Publishing.
引用
收藏
页数:15
相关论文
共 50 条
  • [1] ATTRACTORS FOR THE NAVIER-STOKES-CAHN-HILLIARD SYSTEM
    Giorgini, Andrea
    Temam, Roger
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES S, 2022, 15 (08): : 2249 - 2274
  • [2] UNIQUENESS AND REGULARITY FOR THE NAVIER-STOKES-CAHN-HILLIARD SYSTEM
    Giorgini, Andrea
    Miranville, Alain
    Temam, Roger
    SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2019, 51 (03) : 2535 - 2574
  • [3] The compressible Navier-Stokes-Cahn-Hilliard equations with dynamic boundary conditions
    Cherfils, Laurence
    Feireisl, Eduard
    Michalek, Martin
    Miranville, Alain
    Petcu, Madalina
    Prazak, Dalibor
    MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 2019, 29 (14): : 2557 - 2584
  • [4] NUMERICAL STUDY OF COMPRESSIBLE NAVIER-STOKES-CAHN-HILLIARD SYSTEM
    He, Qiaolin
    Shi, Xiaoding
    COMMUNICATIONS IN MATHEMATICAL SCIENCES, 2020, 18 (02) : 571 - 591
  • [5] A Comparison of Cahn-Hilliard and Navier-Stokes-Cahn-Hilliard Models on Manifolds
    Olshanskii, Maxim
    Palzhanov, Yerbol
    Quaini, Annalisa
    VIETNAM JOURNAL OF MATHEMATICS, 2022, 50 (04) : 929 - 945
  • [6] An Energy Dissipative Spatial Discretization for the Regularized Compressible Navier-Stokes-Cahn-Hilliard System of Equations
    Balashov, Vladislav
    Zlotnik, Alexander
    MATHEMATICAL MODELLING AND ANALYSIS, 2020, 25 (01) : 110 - 129
  • [7] THE NAVIER-STOKES-CAHN-HILLIARD EQUATIONS FOR MILDLY COMPRESSIBLE BINARY FLUID MIXTURES
    Giorgini, Andrea
    Temam, Roger
    Xuan-Truong Vu
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2021, 26 (01): : 337 - 366
  • [8] Extension Criterion to the 3D Navier-Stokes-Cahn-Hilliard equations
    Du, Juan
    Wu, Fan
    BULLETIN OF THE MALAYSIAN MATHEMATICAL SCIENCES SOCIETY, 2024, 47 (02)
  • [9] Numerical investigation of the sharp-interface limit of the Navier-Stokes-Cahn-Hilliard equations
    Demont, T. H. B.
    Stoter, S. K. F.
    van Brummelen, E. H.
    JOURNAL OF FLUID MECHANICS, 2023, 970